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Abstract

The goal of this project was to undertake a cost-benefit analysis of genetic
testing in military populations. We weighed the costs of genetic testing against
the likelihood of saving lives of military recruits with undetected, potentially life-
threatening genetic conditions. Large genomic databases of asymptomatic pop-
ulations were used to analyze the effect that genetic screening for hypertrophic
cardiomyopathy (HCM, the most common cause of sudden cardiac death) would
have on the military. A database containing known pathogenic variants was used
as a training set to build logistic regression models that predicted the pathogenicity
of genomic variants in two genes known to cause HCM. Our cost-benefit analysis
was based, in part, on the frequency of the identified pathogenic variants, as well as
their likelihood of causing disease. We compared the costs and benefits of genetic
screening to non-genetic physiological tests or no tests at all. We also distributed
a survey to the United States Naval Academy to assess the attitudes regarding ge-
netic screening in the military. We conclude that genetic screening with a follow-up
echocardiogram for the detection of HCM is a viable and cost-effective option if
a microarray genetic test is used. We find that individuals in the military view
genetic testing as a viable medical test, but are concerned about the use of genetic
screening to make employment decisions.
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2 Project Synopsis

We provide this section as a general overview of the entire project methods, results, and
conclusions. All details can be found in the rest of the report.

2.1 Introduction

Genetic testing is becoming more and more relevant to medicine. With the cost of genetic
testing lowering every day, and with the clinical significance of genetic tests improving
as well [1], the application of genetic testing to the military to determine diseases that
may impede military service may be used. In this study, we look to determine how
feasible genetic testing may be in the military by analyzing how it may be used on a
single condition, hypertrophic cardiomyopathy (HCM), and also analyze what additional
ideological and psychological barriers may exist in order to implement genetic screening
in the military.

The most common cause of nontraumatic death in the military is sudden cardiac death
(SCD) [2]. HCM is the leading cause of sudden cardiac death among young athletes, and
occurs in 1 in 500 individuals [3]. The military has interest in exploring HCM for this
reason. We focus our analysis on the genes MYH7 and MYBPC3, two genes which cause
80% of HCM [4].

2.2 Methods

2.2.1 Determination of Disease-Causing Variants

We explored the ClinVar database for variants that were either pathogenic/likely pathogenic,
and benign/likely benign with no conflicting interpretations in the genes MYH7 and
MYBPC3. Table I-1 displays the results. 90 pathogenic variants, and 346 benign vari-
ants in ClinVar for these two genes were found.

Table I-1: ClinVar Variants in MYH7 and MYBPC3

Gene # of Benign
Variants

# of Pathogenic
Variants

Freq. of Benign
Variants

Freq. of Pathogenic
Variants

MYH7 203 44 2.52 5.55E-4
MYBPC3 143 46 2.75 9.47E-4

Because genotype-disease empirical correlation is likely incomplete, we built a logistic
regression model which predicted variant pathogenicity. This model was built by using
different combinations of the parameters listed below:

1. Allele Frequency: The frequency of the variant in gnomAD

2. Genetic Conservation: GERP

3. Genetic Conservation: Vertebrate PhyloP

4. Combined Annotation Dependent Depletion (CADD)
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Table I-2: Top 5 Models According to AIC
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5. Protien consequences: amino acid change

6. Protien consequences: nonconservative amino acid change

7. Splice site pathogenicity (dbscsnv)

We used R to run 64 different combinations of the above parameters, and determined
the optimal model based on AIC. The models were ranked based on AIC in predicting
variant pathogenicity in MYH7 and MYBPC3 sepearatley, and also in a combined MYH7
and MYBPC3 dataset. The top 5 models are listed in Table I-2. Black squares in Table
I-2 indicate the presence of the parameter.

Leave-one-out cross-validation (LOOCV) was performed on the combined MYH7/MYBPC3
model 46 and found it to have a sensitivity of 94.4% and specificity of 99.7% for known
pathogenic and known benign variants in MYH7 and MYBPC3.

A “ranked-varint list” was created based off of the results from this model, with the
variants ranked in order of increasing model score, and hence increased prediction of
pathogenicity. This list was used in the simulation described below to assign disease
causing variants in the simulation.

2.2.2 Cost/Benefit Analysis

A cost/benefit analysis was created with an overview schematic displayed as Figure I-1.
The process of the cost/benefit analysis is explained below in a step-wise manner.

1. Simulate pathogenic variant frequencies: In order to simulate variant fre-
quencies as they occur in the general population, we used the gnomAD database
[21] to determine how frequently pathogenic variants would occur in our simulated
population of individuals. The gnomAD database was used as a surrogate of the
military population due to the asymptomatic nature of both populations. The fre-
quency of pathogenic variants in simulated populations depended in part on how
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Figure I-1: Overview of cost/benefit simulation

many variants we chose from the ranked variant list to include as “pathogenic.” We
varied this number from 90 variants (only ClinVar variants) to 400 variants (310
additional variants from model).

2. Simulate HCM in population: In order to simulate HCM, we had to find
P (HCM |V AR) and P (HCM |V ARC). These values were not precise in the lit-
erature, and so we found them indirectly through Bayes’ Theroem as illustrated
in Equations I-1 and I-2. To determine these probabilities, P (HCM) = 0.002 [3],
P (V AR) was found from step 1 above using the gnomAD database, and P (V AR|HCM)
was varied from 0.5 to 0.9, which we found to be an acceptable range from the lit-
erature [5, 3].

P (HCM |V AR) =
P (HCM)P (V AR|HCM)

P (V AR)
(I-1)

P (HCM |V ARC) =
[1− P (V AR|HCM)]P (HCM)

1− P (V AR)
(I-2)

3. Simulate Screening Cases: We simulated six different screening cases, described
in Table I-3. A max-accuracy echocardiogram was simulated to have a sensitivity
of 0.851 and specificity of 0.851. A max-specificity echocardiogram was simulated
to have a sensitivity of 0.607 and specificity of 0.999. Genetic testing was simulated
at 100% accuracy.

4. Simulate Sudden Cardiac Death: Sudden cardiac death was determined by
P (SCD|HCM) = 0.0081 per year [6]. Two separate simulations were run: one for
officers, another for enlisted. Officers spend an average of 11 years in the military,
and enlisted spend an average of 7 years in the military [7].
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Table I-3: Cases Being Compared in Cost/Benefit Analysis

Case 1 No screening for HCM implemented

Case 2 Echocardiogram screening only, maximum accuracy settings

Case 3 Genetic screening followed by echocardiogram screening for positive
genetic test, maximum accuracy settings

Case 4 Echocardiogram screening only, maximum specificity settings

Case 5 Genetic screening followed by echocardiogram screening for positive
genetic test, maximum specificity settings

Case 6 Genetic screening only

The simulations were run 1000 times for each combination of the number of ranked vari-
ants we included from the ranked variant list (# of variants; from 90-400) and the
P (V AR|HCM) (from 0.5-0.9). In this report, we display averages over the 1000 simula-
tions.

2.2.3 Survey

We created a 21-question survey to assess individuals’ attitudes regarding genetic screen-
ing in the military. The survey was approved by the United States Naval Academy HRPP
and was distributed to all military personnel at USNA via email.

2.3 Results

2.3.1 Cost/Benefit Analysis

We display in this synopsis three measures for measuring the effectiveness of each of the
six screening cases.

Firstly, we display the False Discovery Rate (FDR), defined by equation I-3. The FDR
is a measure of the number of false positives in a test: the higher FDR, the more false
positives. The average FDR among the 1000 officer simulations for each combination of
# of variants and P (V AR|HCM) is displayed in Figure I-2. Enlisted simulations had
similar values for FDR.

FDR =
# of individuals discharged and NOT diseased

# of individuals discharged
(I-3)

Notice how, in Figure I-2, the FDR is highest for Case 2 and is constant (around 0.99),
and the FDR is still relatively high and constant for Case 4 (around 0.45). FDR varies
for different values of # of variants and P (V AR|HCM) for Cases 3, 5 and 6, with a
lower FDR corresponding to lower # of variants and higher P (V AR|HCM).
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(a) Case 2
σ: {0.002, 0.002, 0.002, 0.002, 0.002}

(b) Case 3
σ: {0.003, 0.005, 0.006, 0.008, 0.1}

(c) Case 4
σ: {0.08, 0.08, 0.08, 0.08, 0.09 }

(d) Case 5
σ: {0, 0.006, 0.009, 0.012, 0.026}

(e) Case 6
σ: {0.009, 0.067, 0.077, 0.083, 0.098}

Figure I-2: Heatmaps of the average FDR for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

Next, we display the sensitivity, or true positive rate (TPR) of the Cases. The sensitivity
is defined according to Equation I-4. A higher sensitivity means that more individuals
with HCM are identified by the screening test, thus increasing true positives and decreas-
ing false negatives. Figure I-3 displays the sensitivity of each officer Case over the 1000
officer simulations for each # of variants and P (V AR|HCM) combination. Enlisted
values were similar to the officer values.

Sensitivity =
# of people discharged and diseased

# of people diseased
(I-4)

Note how the sensitivity for Cases 2 and 4 appears not to change, and the sensitivity for
Cases 3, 5 and 6 changes with different values of # of variants and P (V AR|HCM).
The sensitivity ranges from approximately 0.4 to 0.75 for Case 3, 0.3 to 0.55 for Case 5,
and 0.5 to 0.9 for Case 6.
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(a) Case 2
σ : {2.05, 2.21, 2.24, 2.27, 2.36}

(b) Case 3
σ : {2.70, 3.26, 3.74, 4.13, 4.49}

(c) Case 4
σ : {3.41, 3.54, 3.60, 3.65, 3.77}

(d) Case 5
σ : {3.78, 4.16, 4.40, 4.63, 5.02}

(e) Case 6
σ : {1.76, 2.60, 3.25, 3.71, 4.19}

Figure I-3: Heatmaps of the sensitivity for each officer case. Standard deviation summary
given as σ : {min, 25th quantile, median, 75th quantile, maximum}

Finally, we display the “break even genetic test cost.” We calculated the cost of each
screening case by comparing the cost of doing nothing (Case 1) to the cost of the screen-
ing cases (Cases 2-6). The costs were arrived at by taking into account the cost of
screening, and the cost incurred by the military when someone dies due to gratuity costs
and forfeited training costs. Cases 2 and 4 (an echocardiogram on the entire population)
were prohibitively expensive. The “break even genetic test cost” is the cost at which a
genetic test must fall to for Cases 3, 5 and 6 at which the military will start to see a
monetary benefit.

We display these break-even genetic test (GT) costs in Figure I-4. It can be seen that
the break-even GT costs for the officer-only simulation range from approximately $50
to $130. For the enlisted-only simulation, break-even GT costs range from below $0 to
approximately $20, and for the officer and enlisted combination, the costs range from
below $0 to approximately $30. The reason for the lower break-even GT costs associated
with the enlisted populations is due to the lower training costs of enlisted personnel as
well as the shorter time enlisted personnel spend in the military on average.
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(a) Case 3 Officer (b) Case 5 Officer (c) Case 6 Officer

(d) Case 3 Enlisted (e) Case 5 Enlisted (f) Case 6 Enlisted

(g) Case 3 Combined (h) Case 5 Combined (i) Case 6 Combined

Figure I-4: Heatmaps of the average value for cost of a genetic test when Net benefit
= 0 for an officer only (top), enlisted only (middle), and combined officer and enlisted
simulation (bottom).
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2.3.2 Survey Results

We found from our survey that approximately 70% of individuals are curious about their
disposition to develop genetic disease, and an overwhelming majority (> 90%) would
want to know if they had a genetic condition that was treatable. However, approxi-
mately 60% of individuals list either losing their job or insurance as their #1 concern
regarding genetic screening. Only around 15% of individuals agree that genetic screening
should be implemented to make employment decisions in the military. Confidentiality is
also a concern, with around 60% of individuals agreeing it would be a concern for them if
genetic testing were implemented. Individuals who had spent more time in the military
were more likely to be opposed to genetic testing. Despite this, almost 50% of individuals
agreed an individual should be prevented from piloting aircraft given a scenario in which
a genetic test showed they had substantial risk of sudden cardiac death.

2.4 Discussion and Conclusion

We found the FDR of Cases 2 and 4, as well as the cost, to be too prohibitively high to be
considered effective for population-level screening. The FDR for Case 6 is prohibitively
high for some combinations of # of variants and P (V AR|HCM). The FDR of Cases
3 and 5 was found to be adequate, however. We also found the break even genetic test
cost to be roughly $50 to $130 for Cases 3, 5, and 6 for an officer-only simulation and
below $0 to $30 for a combined officer and enlisted simulation. Based on the current
cost of genetic tests, we speculate that a DNA microarry is or may in the near future
be monetarily feasible to achieve the break-even cost in the officer population, and even
possibly the officer and enlisted combined population. We conclude that Cases 3 and 5
are the best overall screening Cases to implement, with Case 5 having less false positives
but a lower monetary benefit than Case 3.

From the survey, we conclude that individuals in the military are overall not inherently
opposed to genetic testing and do desire to use it to determine diseases they may posses.
However, many individuals in the military are concerned about and opposed to imple-
mentation of genetic screening in the military to make employment decisions, and are
also concerned about its confidentiality.

Overall, we conclude that genetic screening in the military to detect Hypertrophic Car-
diomyopathy may be feasible from a specificity and cost/benefit standpoint if a microarray
is used and it is followed-up with an echocardiogram. However, the military will need to
address ideological barriers to the implementation of genetic screening in order for it to
be effective. We also note that genetic screening has the potential to detect more than
one condition (possibly keeping costs constant and increasing benefit), and also has the
potential to become more accurate as population-level screening is implemented.
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3 A Primer on Screening Tests and Statistics

The concepts of statistics relating to screening tests permeate this entire report. Some
concepts of statistical analysis will be explained in the content of the report while data
are being presented, however a basic understanding of statistics and screening tests will
be useful before beginning to read the report.

Medical screening tests look to identify individuals who have a disease, while not identi-
fying individuals who do not have disease. This twofold goal is quantified by maximizing
true positives and true negatives, and minimizing false positives and false negatives. Fig-
ure 1 indicates the definitions of false positives, false negatives, true positives, and true
negatives.

Figure 1: In a disease screening test, false positives are individuals that do not have the
disease but are identified as having it, and false negatives are individuals that have the
disease but are not identified as having it. These concepts may be applied to any binary
condition test.

Optimally, a screening test will minimize the number of individuals it incorrectly identi-
fies. However, often, changing the value for one factor will cause other factors to change
as well. Some screening tests may desire to be more selective, and will tolerate missing
individuals (false negatives), but will want to make sure that individuals identified by
the test truly have the condition (minimize false positives). On the other hand, some
tests can tolerate misidentifying individuals as positives, but will not tolerate individuals
being classified as erroneously negative.
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4 Motivation

At a molecular and structural level, there is a good understanding of what makes up
our genetic code: the deoxyribonucleic bases adenine, thymine, cytosine, and guanine.
In 2003, the successful completion of the human genome project ushered in an era of
optimism that humans could understand the letters of the genetic code that caused com-
mon and uncommon diseases. However, since then, it has been evident that the human
genome affects development and pathogenesis in ways that are too complex for humans,
and even the most sophisticated computer algorithms, to completely understand at the
present moment [1].

Despite this undeniable complexity, understanding of the human genome has progressed
significantly over the past decade and the ability to sequence the human genome has been
brought to nearly all individuals. Although the sequencing of the first human genome
took decades and over a billion dollars, a genome can be accurately sequenced today in
less than a day for less than $1,000 through next generation sequencing techniques. On-
line databases that are accessible to everyone have specific genetic variations listed that
are known to cause disease. New disease-causing “pathogenic” mutations are being dis-
covered every day, and advanced computer algorithms are being used to develop genetic
models for complex multigenic diseases. Medical genetics has become a distinct medical
specialty, and knowledge of genetics has grown to encompass nearly every medical spe-
cialty in existence [13].

One of the most important pieces of information that the genome can give is a person’s
disposition for certain diseases. The goal of genetic screening is to survey the genome
looking for variants: deviations from the regular sequence of DNA base pairs A, C, G,
and T; that cause disease. By identifying these “pathogenic variants” in an individual’s
genome, the individual may be made more aware of their likelihood of developing disease.
Screening for certain genetic conditions may reduce significantly the morbidity, mortality,
and impact on the quality of life of individual affected by these diseases [14].

Although the prospect of genetic screening is large, many setbacks also exist in its imple-
mentation. Due to our primitive understanding of complex genetics, the mere existence
of a pathogenic variant does not always indicate the presence or eventual development
of disease. This is because most genetic conditions depend on not one but many differ-
ent genes that interact with each other and the environment to produce a phenotype,
or physical manifestation [14]. However, for many genetic conditions, there are certain
variants that greatly increase the chance for an individual to develop a specific disease.

It is then necessary, before genetic screening be implemented in any population, to assess
the degree to which a population may benefit from this screening. A concern with the
viability of genetic screening, and any diagnostic test, is assessing the amount of false
negatives and false positives produced from the test when implemented in the population.
A test that will return false negatives will be ineffective in diagnosing conditions, and a
test that will return false positives may place more burden on the patient and healthcare
system than necessary. Additionally, medical tests cost money and may or may not make
monetary sense to implement. Tests may also have a psychological impact on individu-
als, and opinions on medical testing may impact the population of the individuals that
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undergo the testing. The goal of this study will be to determine if implementation of
genetic screening in the military (a population of seemingly healthy individuals) may help
identify individuals who have life-impacting genetic conditions without prohibitively cost-
ing the military money, or cause discontent due to the opposition and the psychological
impact of the tests in the force.

4.1 Applicability to Military

Due to the physical nature of military work, genetic screening is of even greater impor-
tance in the military. Kruszka et al. emphasized the use for genetic screening to uncover
long QT syndrome, which is a cause of sudden cardiac death (SCD) [14].

The impact of sudden cardiac death on the military is not insubstantial. Eckart et al.
studied autopsy reports over a 25 year period from military recruit training (1977-2001).
277 non-traumatic deaths were identified during recruit training, of which 148 autopsy re-
ports were available. Of these 148, around half were sudden cardiac deaths [15]. Diseases
such as hypertrophic cardiomyopathy (HCM), long QT syndrme, and myocardidis were
the main causes of SCD. The military is an especially important area for the identification
of sudden cardiac death due to the strenuous physical demands placed on its members,
as over 90% of SCD in the young is manifested during exercise. Another study performed
by Eckart et al. analyzed 1,044 sudden cardiac deaths throughout the entire Department
of Defense over the course of 10 years. Many of these deaths were due to a genetic cause,
such as HCM or long QT syndrome that could have been prevented through the use of
genetic screening [2].

The military may use genetic screening to prevent sudden cardiac death as Kruszka et.
al. states, but also may use genetic screening for a number of other important conditions.
Aggressive cancers, or predisposition to aortic aneurysms are other diseases that may be
investigated with genetic screening and have special importance in the military.

Currently, the military uses genetic screening to identify individuals with sickle cell trait
(SCT) and Glucose 6-phosphate dehydrogenase (G6PD) deficiency. Although these tests
are for genetic conditions, they are not true genetic tests: they test for the phenotypic
effects of genetic disease (the absence of normal hemoglobin for SCT and deficiency of
the G6PD enzyme in cells) instead of investigation of the genomes themselves [16].

4.2 Ethical Implications of Study

It must be noted, however, that the ethical implications of genetic screening are far reach-
ing and very significant. Genetic screening has implications in employment and health
insurance, as employers and insurers could, with the advancement of genotype-phenotype
correlations, discriminate based on genetic results or conditions. Current law prevents
this discrimination for all non-government employers.

The Genetic Information Nondiscrimination Act of 2008 (https://www.eeoc.gov /laws/statutes/
gina.cfm) prohibits employers from refusing to hire or discriminate against any employee,
and prevents insurers from making decisions about eligibility for insurance, insurance cost
or insurance coverage based on results of genetic information. In addition, it prohibits
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employers or insurers from forcing employees or clients to undergo genetic testing, un-
less such genetic testing is to monitor the health of an employee due to dangerous work
environments required by law. Therefore, genetic screening could not lawfully be used
by any civilian employer or labor union for the purpose of excluding individuals from
employment, or be used by insurance companies to alter coverage or insurance rates.

The military, unlike any civilian employer, allows selection of individuals based on genetic
results [16]. However, as genetic screening advances, the question of how genetic results
will be used by the military to assess the fitness of an individual for duty will become
more important. Some genetic conditions are disqualifying in the military, including
sickle cell anemia, long QT syndrome, and hypertrophic cardiomyopathy. The military,
however, does not use genetics to test for these conditions, and instead only monitors the
phenotypic effects of the disease. The question must be eventually approached whether
the military should begin using genetics to identify individuals with these conditions.

Additionally, the impact of genetic screening will also be relative to the number of false
positives and false negatives that it returns. If too many false positives are recorded
for a specific condition, the burden on the healthcare system and individuals would be
significant. Individuals who have positive genetic tests likely will suffer anxiety associated
with that positive result. In addition, if many expensive and timely procedures are
undertaken in order to confirm the genetic tests, it will impose a heavy burden on the
healthcare system that may cause healthcare costs to increase significantly. A large
number of false negatives would make a genetic test virtually useless, as it will allow for
individuals that possess disease to be undetected by the test.

5 Overview of Project Method

This project looks to assess the viability of genetic screening by determining the overall
cost or benefit genetic screening may offer the military, as well as assessing the current
attitudes of genetic screening in the military. There are three main phases to this project:

1. Perform a genetic analysis to find pathogenic variants in an asymp-
tomatic population. We looked through the gnomAD database to find genomic
variants that may predict disease. First, the ClinVar database was analyzed for
pathogenic variants part of the American College of Medical Genetics list of Rec-
ommendations for Reporting of Incidental Findings [17]. The frequencies of these
variants in the gnomAD database were used to draw conclusions about how the
screening for these conditions may impact individuals in the military. Secondly,
the ClinVar database along with several genetic parameters were used to develop
a logistic regression model that predicted the pathogenicity of variants for hyper-
trophic cardiomyopathy in the gnomAD database. The results from this analysis
were used to perform a cost benefit analysis listed in phase 2 below.

2. Perform a cost/benefit analysis of genetic screening in the military. A
cost-benefit analysis of performing genetic screening for hypertrophic cardiomyopa-
thy on a military population was performed. This produced a monetary value of
cost and benefit that genetic screening will likely produce if implemented, as well
as give an estimation on the number of false positives and false negatives that may
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result from the tests. The results from this analysis may be used to determine
how genetic screening may be implemented currently or in the future, and may
serve as a model for determining the benefit of screening other large, asymptomatic
populations.

3. Perform an analysis of the current attitudes of genetic screening in the
military A survey was created and distributed to all military members at the
United States Naval Academy. The results from this survey gauge how the force
will receive a genetic test, and if education in genetics may make individuals more or
less open to the idea of genetic screening. The survey also assesses how individuals
feel about receiving a genetic result that may impact their career.
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6 Finding Pathogenic Variants in an Asymptomatic

Population

In order to perform genetic screening, pathogenic variants must be located in the genome.
A pathogenic variant is a genetic variant that causes disease.

6.1 Overview of Genetic Variation

Genetic screening will ultimately look at an individual’s genome and determine whether
an individual has susceptibility to genetic disease based on the base pairs in their genome.
A genome is comprised of 23 chromosome pairs which contain over 3 billion nucleotide
base pairs: the A, C, G, and T that make up the genetic code. DNA is a double-stranded
molecule, and Adenine (A) will prefer to pair up with Tyrosine (T), while Cytosine (C)
will prefer to pair up with Guanine (G). This study will focus on single nucleotide poly-
morphisms (SNPs; see Figure 2) which occur when a single nucleotide base pair changes
to another base pair (eg. A G-G pair changes to a T-A pair).

Figure 2: Single Nucleotide Polymorphisms [18].

This study will also look to detect pathogenic insertions and deletions (INDELs; see Fig-
ure 3). INDELS occur when extra genetic information is inserted in the genetic code
(insertion) or when genetic information is removed from the genetic code (deletion). IN-
DELs may cause frameshift mutations, which is when the “reading frame” of the DNA
sequence is changed, altering protein structure significantly.

In order to understand genetic pathogenicity in general, it is important to understand
how DNA serves as the blueprint for the processes of nearly all life. The primary struc-
tural components of life that cause organisms to do things are proteins. Proteins are
polymers of many amino acids, which are molecules containing amine and carboxyl func-
tional groups along with a side chain. The differing properties of the side chains of the
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Figure 3: Genetic Insertions. Deletions will follow the same pattern, with DNA sequence
deleted instead of inserted into the genome. A frameshift INDEL will occur if nucleotides
are inserted or deleted in multiples other than three.

amino acids is what allows proteins to take very complex and diverse shapes. Many differ-
ent factors cause proteins to fold into the complex structures that are required to perform
functions in life, but one of the most important factors in protein structure and function
is the unique sequence of amino acids that make up a protein. If a protein’s amino acid
sequence changes, it is possible that it could fail to perform the function required of it,
or perform a detrimental function to the organism.

The central dogma of molecular biology, as illustrated in Figure 4, states that DNA codes
for RNA, which ultimately codes for the amino acid sequence that makes up proteins.
By changing the sequence of coding DNA, the sequence of RNA is changed, which may
also change the amino acid sequence in proteins. However, it is important to note that
not every DNA change will necessarily change the amino acid sequence both because
there are several DNA sequences that code for the same amino acid (these are known
as synonymous mutations in Figure 2), and because not all genetic information actually
codes for proteins [3].

The exome is the protein coding region of the genome, and makes up for only 2% of the
entire human genetic code. The rest of the human genetic code is made up of various
non-coding regions that may serve as regulatory sites, sites that tell other portions of
the genome what to do, or may simply be “evolutionary baggage.” Most of the human
disease discovered today is within the exome, and most genetic disease studies focus only
on interpreting genetic information from the exome [19]. This study will focus on the
SNPs and INDELs that are part of the exome, however may consider regions that are
noncoding if sufficient evidence has been gathered that proves the region’s pathogenicity.

6.2 Determining a Population

A genetic population that is similar to the military’s must be found to properly simulate
the effect genetic screening may have on the military. This population must be com-
prised of individuals that are asymptomatic for overt genetic conditions and would pass
an entrance-level military physical exam. However, although these individuals may be
overtly healthy, it is still possible for them to harbor genetic disease such as conditions
that cause sudden cardiac death, aggressive cancers, or aortic aneurisms.
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Figure 4: The Central Dogma of Molecular Biology is important to understand how
changes in genetic code can cause genetic disease [20].

The gnomAD database is a genetic database that includes genetic information from in-
dividuals of all ethnicities from over 20 independent genomic research studies, and has
“removed individuals known to be affected by severe pediatric disease, as well as their
first-degree relatives” [21]. Because of this, the gnomAD database provides a popula-
tion of more than 120,000 individuals that are overtly healthy. However, the gnomAD
database does not remove individuals that may harbor other unknown genetic conditions.
Therefore, this population is a very good representation of the military population.

It is important to note that the gnomAD database provides de-identified and fragmented
genomes. This means that gnomAD, for purposes of privacy, does not associate whole
genomes or exomes together. Instead, gnomAD simply counts the number of alleles at
each genetic locus, and provides information for how many variant alleles there are at a
locus. An illustration of this is shown in Figure 5.

The gnomAD database provides a useful overtly healthy population, and its information
can be used to identify how many individuals in this overtly healthy population possess
variants that cause genetic disease.

It is important to note that variants found in the gnomAD database in this study are as-
sumed to be at their natural frequency in the general population. The gnomAD database
contains 123,136 exomes and 15,496 genomes as of November 2017, and rare variants are
presumed to have the same frequency in gnomAD as they would in any healthy population
gathered [21]. Although this assumption is the best one that can be made with a rela-
tively large population, it is possible that rare variants may be under or over-represented
in this limited population compared to the overall general healthy population.

6.3 Pathogenic Variants in ClinVar

Finding an adequate population of individuals for analysis is only the first step of the
process. Next, certain variants in the population must be identified as pathogenic.
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Figure 5: The gnomAD database does not associate whole genomes together. Instead, it
reports how common alleles are in the population.

ClinVar is a database that classifies variants as disease causing or not disease causing
based off of scientific studies that suggest or prove that a certain variant is disease caus-
ing or benign. This database may be used directly to identify pathogenic or benign
variants in the population [22].

Originally, pathogenic variants were to be determined in this study based solely on their
classification in the ClinVar database. A computer program was written that determines
the frequency of pathogenic variants in any gene in the gnomAD database according to its
classification in ClinVar. The frequency of ClinVar pathogenic variants in the gnomAD
database for the 29 genes that have diseases applicable to the military is shown in Table
1. These genes were chosen based on their relevance to disease and severity classification
by the American College of Medical Genetics [17], as well as the diseases they cause being
applicable to adult individuals that undergo high-strenuous activity. However, the data
presented in ClinVar is neither complete nor wholly accurate.

ClinVar uses the American College of Medical Genetics (ACMG) classification of variants
from their “Standards and Guidelines for the Interpretation of Sequence Variants” [17]
These guidelines give five potential categories for variants of investigation: Benign, Likely
Benign, Uncertain Significance, Likely Pathogenic, and Pathogenic. There are compli-
cated standards that go along with each classification, but the general consensus is that
benign and pathogenic variants are to be 99% certain of being benign (not disease caus-
ing) or pathogenic (disease causing) respectively. Likely benign/pathogenic variants are
to have 90% certainty of their clinical significance. The remainder of variants are placed
under the category of “variants of uncertain significance.” These assertions may be found
in various ways, from direct clinical observation of pathogenicity to model organism stud-
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Table 1: List of Frequency in gnomAD database of ClinVar Pathogenic Variants for
Conditions Most Applicable to the Military

Gene Disease Frequency in gnomAD

ACTA2 Aortic Aneurism 9.69 E-5
BRCA1 Hereditary Breast/Ovarian Cancer 7.34 E-4
BRCA2 Hereditary Breast/Ovarian Cancer 1.52 E-3
COL3A1 EDS- vascular type 4.05 E-5
DSC2 right ventricular cardiomyopathy 9.55 E-5
DSP right ventricular cardiomyopathy 1.88 E-3
PKP2 right ventricular cardiomyopathy 2.53 E-4
TMEM43 right ventricular cardiomyopathy 1.50 E-4
DSG2 right ventricular cardiomyopathy 1.29 E-3
FBN1 Aortic Aneurisms 5.42 E-4
TGFBR1 Aortic Aneurisms 9.66 E-5
TGBBR2 Aortic Aneurisms 1.10 E-3
SMAD3 Aortic Aneurisms 1.23 E-5
ACTA2 Aortic Aneurisms 9.69 E-5
MYLK Aortic Aneurisms 4.07 E-6
MYH11 Aortic Aneurisms 2.34 E-4
MEN1 Multiple Endocrine Neoplasia Type 1 8.13 E-6
MLH1 Lynch Syndrome 2.33 E-1
MSH2 Lynch Syndrome 1.16 E-2
MSH6 Lynch Syndrome 5.15 E-3
PMS2 Lynch Syndrome 5.35 E-3
MUTYH MYH-Associated Polyposis 5.64 E-3
MYH7 Hypertrophic Cardiomyopathy 5.55 E-4
MYBPC3 Hypertrophic Cardiomyopathy 9.47 E-4
NF2 Neurofibromatosis type 2 4.06 E-6
SDHD Hereditary Paraganglioma-Phenochromocytoma Syndrome 1.38 E-2
SDHAF2 Hereditary Paraganglioma-Phenochromocytoma Syndrome 2.03 E-5
SDHC Hereditary Paraganglioma-Phenochromocytoma Syndrome 8.55 E-5
SDHB Hereditary Paraganglioma-Phenochromocytoma Syndrome 1.63 E-2

ies of variants to computer simulations [22]. The ClinVar database may be modified by
anyone in the scientific and medical communities, and provides references to supporting
evidence for genetic variant assertions. ClinVar, because of the ability for anyone in the
scientific or medical community to classify variants, may have incorrect variants of clas-
sification. Therefore, it is important to carefully examine each variant classification in
ClinVar to assure that it is categorized with consistent support from empirical evidence.
If studies debate the significance of a variant, then it should not be classified as a known
pathogenic variant.

From Table 1, it can be seen that some conditions have a low frequency of pathogenic
variants, and some conditions have a higher frequency of pathogenic variants (such as
MLH1). If all of the frequencies of pathogenic variants for these 29 genes were added, it
would total a frequency of 0.305. This means that, if the variants are inherited indepen-
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dently and each individual only has one variant, approximately 30% of the population
would have a pathogenic variant. However, rare genetic disease does not occur in 30%
of the population. This situation illustrates two things: that having a pathogenic vari-
ant does not necessarily mean that an individual will have disease, and some pathogenic
variants may be misclassified.

ClinVar is also incomplete. The diseases that are being studied in this project occur
in low frequencies in the population. Diseases may be caused by hundreds of different
mutations in a single gene, and therefore many of the variants that exist in a general
population that cause disease will not have been previously examined in ClinVar due to
their rarity. Because of this, it is important to realize that the number of pathogenic
variants found in ClinVar likely does not include all of the pathogenic variants in the
total population of individuals.

The question of how to uncover these undiscovered pathogenic variants as well as assure
that the variants used from ClinVar are accurate must be answered before progressing
father. To do this, logistic regression models were built around the two genes that most
commonly cause the disease hypertrophic cardiomyopathy.
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7 Building A Model For Predicting Pathogenicity in

Hypertrophic Cardiomyopathy

7.1 Logistic Regression Model

To uncover undiscovered pathogenic variants, a logistic regression model was developed
that best predicted the pathogenicity of variants in ClinVar. The logistic regression model
is built upon Equation 1.

p =
eα+βnX

1 + eα+βnX
(1)

Logistic Regression is used to identify the percentage probability of a binary result oc-
curring (a binary result is a “yes/no” result: there are two possibilities). The parameters
in the logistic regression model are represented as X in the equation. β represents a
coefficient that is given to each parameter to fit it to a curve. Multiple parameters may
be used in the equation as multiple X and β terms. p is the output of the model, and is
the probability that a result will occur based on the values of the parameters. α is the
intercept of the equation that is used to normalize the equation.

In this case, logistic regression was used to identify the probability that a certain variant
is pathogenic. ClinVar data was used to train the model. Variants from ClinVar were
assumed to be correct: a variant classified as “pathogenic” or “likely pathogenic” with
no conflicting interpretations was assumed to be pathogenic, and a variant classified as
“benign” or “likely benign” with no conflicting interpretations was assumed to be benign.
Each variant had several parameters associated with it, discussed in Section 7.5. These
parameters were used to guide the model to make predictions of pathogenicity. Figure
6 is an example of a logistic regression model. This model was generated by matching
parameters with a pathogenic/benign result using the software R [23]. The green dots
represent known pathogenic variants (at 1.0 probability) and known benign variants (at
0.0 probability). The parameter(s) used to guide the model are based off of these green
dots, and the red line is the model result. Figure 5 indicates that at around a parameter
value greater than 30, approximately 100% chance of pathogenicity occurs, and at a pa-
rameter value less than 10, approximately 0% chance of pathogenicity occurs. Between
10 and 30, variable probabilities of pathogenicity occur.

Using a logistic regression model, an arbitrary cutoff of what makes a variant pathogenic
can be used. This means that, if a cutoff is set at 90%, all variants the model assigns
with a greater than 90% chance of being pathogenic are the only variants classified as
pathogenic according to the model. If a cutoff of 60% is used, variants with a greater
than 60% chance of being pathogenic according to the model are classified as pathogenic.
This ability to adjust the cutoff allows for greater flexibility in determining pathogenic
variants.

7.2 Hypertrophic Cardiomyopathy, MYBPC3 and MYH7

The logistic regression model will be trained using ClinVar data from two genes, MYH7
and MYBPC3, which are known to cause Hypertrophic Cardiomyopathy. The high fre-
quency and relevance of hypertrophic cardiomyopathy to the military, in addition to its
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Figure 6: Example Logistic regression model predicting the pathogenicity of variants
based on certain parameters.

genetic causes, make it a good condition on which to base the model and the rest of the
cost/benefit simulations.

Figure 8: Note the enlargement in
the muscle of the left ventricle, de-
creasing its size. This makes pump-
ing blood through the heart less ef-
ficient [9].

Hypertrophic Cardiomyopathy (HCM) is a disease
in which the heart muscle (myocardium), and more
specifically the left ventricular wall, enlarges. The
enlargement causes the left ventricle to shrink, and
ultimately pump blood less efficiently as shown in
Figure 8 [3].

Approximately 80% of HCM is caused by mu-
tations in two genes that code for sarcomere
proteins: beta-myosin heavy chain (MYH7) and
myosin-binding protein C (MYBPC3) [4]. In
order to understand how mutations in these
proteins cause HCM, it is important to know
the structure and function of the sarcom-
ere.

The sarcomere is the basic unit of both cardiac and
skeletal muscles. Sarcomeres are rows of alternat-
ing lines of actin and myosin. The lines of myosin
include “heads” that stick out and attach to the
actin, but only attach to actin when Calcium ions
(Ca2+) are present. When Ca2+ is present and
myosin binds to actin, the energy stored in ATP
allows myosin to pull the actin closer together, con-



33

Figure 7: The contraction of the sarcomere. When Ca2+ is present, Myosin will cause
the actin filaments to move closer together, contracting the muscle [8].

tracting the muscle as shown in Figure 7.

MYH7 and MYBPC3 encode for proteins that make up the myosin filaments in the mus-
cle. A proposed mechanism for the pathogenesis of hypertrophic cardiomyopathy first
involves the altered structure of the MYH7 or MYBPC3 myosin binding protiens due to a
pathogenic vairiant in the genes MYH7 or MYBPC3, causing them to be less effective in
binding to actin. This causes the myosin filament to contract less efficently, and requires
the heart muscle to grow larger in order to have the same pumping effect, ultimately
increasing the size of the left ventricular wall [24].

Another approximately 20% of HCM is caused by a variety of both known and unknown
causes. Several other genes such as TNNT2, TPM1 and MYL3 contribute to very small
percentages of HCM, but the majority of HCM cases are due to MYH7 or MYBPC3
mutations [4].

HCM is the most common congenital heart condition known, and is also the most com-
mon cause of sudden cardiac death upon exercise. The prevalence of HCM in the general
population is generally agreed to be 1 in 500 (0.2%) [4]. This means that, with 1,326,836
individuals in active duty military status in June 2017 [25], over 2,500 individuals will
have HCM, and over 2,000 individuals will have HCM due to a mutation in MYH7 or
MYBPC3. HCM is also listed as a disqualifying condition in the military [26]. As Eckart
et al. stated, sudden cardiac death is an issue in the military, especially because sudden
cardiac death is thought to be brought upon by intense exercise [15]. The military there-
fore has great interest in exploring and preventing the most common cause of sudden
cardiac death, hypertrophic cardiomyopathy (HCM). It is also important to note that, if
an individual is diagnosed with HCM before sudden cardiac death (SCD) occurs, SCD
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(a) Heart with HCM (b) Normal heart

Figure 9: Parasternal short axis echocardiogram midpapillary level display with HCM
and a normal heart. Both hearts are shown while the left ventricle is contracted. Note
the larger size of the left ventricular wall and smaller left ventricle in the HCM image
[10].

can be prevented through treatment.

7.2.1 Current Methods in Screening and Treatment for HCM

Currently, the most widely used method for determining whether an individual has HCM
is an echocardiogram (also known as an echo). An echocardiogram is a test that uses
ultrasound to create pictures of the heart to diagnose certain structural defects that may
be present.

Diagnosis of HCM usually requires an echocardiogram where the left ventricular walls
are observed to be thicker than normal. The actual thickness of the walls depends on
the location they are in the heart, and several different measures of wall thickness are
used with varying degrees of accuracy, sensitivity and specificity. Figure 9 displays how
HCM is diagnosed with an echocardiogram. The width of the left ventricular walls are
measured, and if too large, HCM is diagnosed [11].

Genetic testing and Magnetic resonance imaging (MRI) are also used for the current di-
agnosis of HCM. If an individual suspected to have HCM shows negative or inconclusive
on an echocardiogram, cardiac magnetic ressonance (CMR) imaging and genetic testing
may be used as a follow-up procedure. Often, if an individual has a pathogenic variant
that is known to cause HCM, they will get routine echocardiograms on a yearly or other
frequent basis, to assess whether HCM develops at some point in their lives, as HCM
may develop in different individuals on different timeframes [11].

Generally, individuals are only screened for HCM via echocardiogram if they have family
history of the disease or are suspected to have the disease due to a cardiac event [11].
However, many cases of HCM that lead to SCD go undiagnosed because there are vir-
tually no symptoms until the manifestation of SCD, and the disease can occur without
family history.
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Treatment for HCM includes the use of beta-blockers, calcium-channel blockers, as well
as invasive procedures such as septal reduction (increasing the size of the left ventricle),
and an implantable cardloverter-difibrillator (ICD). An ICD is a device that is implanted
in the body that can detect fibrillation in the heart, and render shocks if fibrillation is
detected, preventing sudden cardiac death. ICD devices are placed in individuals with a
high risk of SCD, or history of fibrillation [11].

Generally, because the risk of SCD increases when individuals with HCM perform athletic
activities, participation in intense competitive sports or intense physical activity is not
recommended. The American Heart Association has developed a point system whereby
the risk of certain activities to individuals with HCM is noted, displayed in Table 2.
In the table, recreational (non-competitive) sports are categorized according to intensity
level, and are guaged on a scale of 0 to 5 for eligibility, with 0 to 1 meaning HCM patients
strongly discouraged from participating, 2 to 3 meaning possible participation depending
on individual clinical results and severity, and 4 to 5 meaning likely permitted participa-
tion. Note that participation in competitive sports is not recommended, and that many
of the activities listed as strongly discouraged from participating (such as running, etc.)
are activities that individuals will participate in during military training or duties [11].

Genetic screening or testing may offer an accurate and more inexpensive method for
identifying individuals that have HCM than electrocardiography. Genetic testing may or
does cost less than electrocardiography. The average price billed to Medicare for echocar-
diography in fiscal year 2015 was $2,506 [27]. Genetic screening may cost $1,000 or less
[28]. Additionally, genetic screening has the potential to uncover additional conditions in
addition to HCM that echocardiography cannot detect.

Table 2: American Heart Association Recommendations for the Acceptability of Recre-
ational (Noncompetitive) Sports Activities and Exercise in Patients With HCM [11].
Numbers from 0-1 indicate HCM patients are strongly discouraged from participating, 2-3 indi-

cates possible participation, and 4-5 indicates likely permitted participation.

High Intensity Moderate Intensity Low Intensity

Basketball 0 Baseball/softball 2 Bowling 5
Body Building 1 Biking 4 Golf 5
Gymnastics 2 Modest hiking 4 Horseback riding 3
Ice Hockey 0 Motorcycling 3 Scuba diving 0
Racquetball/squash 0 Jogging 3 Skating 5
Rock climbing 1 Sailing 3 Snorkeling 5
Running (sprints) 0 Surfing 2 Weights (nonfree) 4
Skiing 2 Swimming 5 Brisk walking 5
Soccer 0 Tennis (doubles) 4
Tennis (singles) 0 Treadmill/stationary bicycle 5
Football (touch/flag) 2 Weightlifting (free weights) 1
Windsurfing 1 Hiking 3
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7.3 An Analysis of ClinVar for Pathogenic Variants of MYBPC3
and MYH7

All variants found in gnomAD for MYBPC3 and MYH7 were screened using ClinVar in
October 2017 to find known pathogenic and likely pathogenic variants. Table 3 describes
the results of the ClinVar analysis. As described in Section 6.3, this ClinVar analysis is
likely incomplete. It is likely that many more pathogenic variants are left undiscovered
by ClinVar.

Table 3: ClinVar Variants in MYH7 and MYBPC3

Gene # of Benign
Variants

# of Pathogenic
Variants

Freq. of Benign
Variants

Freq. of Pathogenic
Variants

MYH7 203 44 2.52 5.55E-4
MYBPC3 143 46 2.75 9.47E-4

7.4 Genetic Linkage Analysis

As illustrated in Figure 5, the gnomAD database does not associate whole genomes to-
gether. Therefore, it is unknown if an individual in the gnomAD database has only one
pathogenic variant, or instead has multiple pathogenic variants. Some genetic variants
are usually inherited together: this is because they are close to each other on the same
chromosome and are “linked:” during crossing-over in meiosis, they will almost always
be inherited together. Genetic variants inherited together are known as haplotypes. To
determine if haplotypes will cause genetic variants found in ClinVar to be inherited to-
gether, the 1000 genomes database was analyzed to see if co-location of genetic variants
exists.

The 1000-genomes database is a database comprised of 2,504 whole genomes [29, 30].
This database allows the user to see every variant that a particular individual has, allow-
ing for haplotype analysis. This database is too small to be used to analyze the frequency
of rare variants in a general population, but may be used to see if certain variants are
inherited together.

Haplotypes may, in the end, cause the number of affected individuals from the genetic
screening to change. As illustrated in Figure 10, variants that are independent are mea-
sured by the gnomAD database to come from three separate individuals. However, hap-
lotype analysis may find that all three variants are found in one individual. This may
ultimatley affect the prevalence, penetrance, and cost/benefit analysis of genetic screen-
ing.

Using the 1000 genomes database version 3, in MYH7 and MYBPC3 [29], six variants
that were labeled as “Pathogenic” according to ClinVar were found. (14:23888796 C/T;
14:23898247 G/A; 11:47355169 G/A; 11:47357547 G/T; 11:47364621 G/A; 11:47374186
C/G). None of these variants were found on the same genotype as any of the other
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Figure 10: Haplotype analysis may allow the measured number of affected individuals to
decrease.

pathogenic variants. Because of this finding, all variants used in this study are assumed
to be independent of any other variants.

7.5 Parameters Used in Logistic Regression Modeling

There were five main parameters that were used in logistic regression modelling for MYH7
and MYBPC3. Each of these parameters was chosen based on its relevance in determining
genetic pathogenicity, and each parameter was analyzed statistically by itself to assure
that it could adequately separate known pathogenic variants from known benign variants.

Each parameter was assessed graphically using boxplots or mosaic plots. Boxplots, or
“box and whisker plots” show the different percentiles of each variable. Figure 11 shows
an example boxplot. A good parameter will separate pathogenic and benign variants,
and will be seen as a large difference between the percentiles of the parameters between
pathogenic and benign variants. Boxplots were created for the MYBPC3 gene variants
alone, the MYH7 variants alone, and a dataset combining the MYBPC3 and MYH7 vari-
ants. Separation was assessed based on these three boxplots for each parameter.

Figure 11: Example boxplot. Useful parameters will display different values for
“pathogenic” and “benign” variants.
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7.5.1 Parameter 1: Allele Frequency

Allele frequency is the frequency that a variant occurs in a population. In the gnomAD
database, it is represented according to Equation 2.

Allele Frequency =
Number of alleles in gnomAD

Total gnomAD population
(2)

Because genetic conditions are rare, it would be expected that alleles with lower allele
frequency would be more likely to be pathogenic. This is seen in Figure 12.

(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 12: Boxplots of allele frequency. Benign variants have much higher allele frequen-
cies than pathogenic variants, but the separation is not complete.

It is important to note that only variants that were of frequencies below 0.05% in the
population were included in the final models. This is because variants over 0.05% fre-
quency in the population are highly unlikely to be causative of rare genetic disease. No
pathogenic variants above a frequency of 0.009% were found in ClinVar for MYH7 or
MYBPC3. Because genetic disease occurs at a low frequency in the population (HCM
occurs at a 0.02% frequency) [3], and almost always involves more than one variant that
causes disease, the expected frequency of a pathogenic variant in the population is well
below 0.05%. It was found that including variants over 0.05% in the logistic regres-
sion model caused the logistic regression model to overuse frequency as a predictor of
pathogenicity, and call everything below a threshold frequency as pathogenic regardless
of other parameters. Setting a cutoff frequency of 0.05% allowed other useful parameters
to become relevant, as frequency exhibits a less pronounced role in the logistic regression
model when all variants explored have a relatively low frequency.

Figure 12 displays the boxplots for allele frequency with a cutoff of 0.05%. It can be seen
that many benign variants have a higher frequency than pathogenic variants, however
the separation is not complete.

7.5.2 Parameter 2: Genetic Conservation

Genetic conservation measures how much a certain genetic location has remained the
same over the course of evolution. Genetic locations that retain the same base pairs over
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(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 13: GERP variable separation. Note that pathogenic variants have a higher GERP
score than benign variants, but the separation is not complete.

(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 14: Vertebrate PhyloP variable separation. Note that pathogenic variants have a
higher PhyloP score than benign variants, however the separation is incomplete.

a progression of many species are likely fundamental to basic organism function, because
they may not confer a genetic advantage when changed. Genetic locations that change
base pairs likely have functions that may not be as fundamentally important to an or-
ganism. An example of this could be a gene that codes for a cellular ionic pump that is
present in all vertebrate species. Changes in base pairs in this genetic location cause or-
ganism to undergo severe metabolic disease because of the loss of function of this crucial
ionic pump. This genetic location would be highly conserved over the course of evolution.

Two separate conservation scores were used in this study: the Genomic Evolutionary
Rate Profiling (GERP), which looks for conserved variants in 29 mammalian species [31],
and the Vertebrate PhyloP, which looks for conserved variants in 100 non-human primate
species [32]. Each score was assessed independently for parameter separation. GERP is
shown in Figure 13, and Vertebrate PhyloP is shown in Figure 14. Both scores provided
some, yet not complete, variable separation.
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7.5.3 Parameter 3: Combined Annotation Dependent Depletion (CADD)

The Combined Annotation Dependent Depletion, or CADD, is a measure of deleterious-
ness, or how much a variant is selected against in evolution. If a variant is at a lower
frequency than would be expected according to evolution, its CADD score is higher [33].
CADD takes many different parameters, including allele frequency, genetic conservation,
and protein effects, and combines them into an algorithm that predicts deleteriousness.
As shown in Figure 15, CADD provides limited separation between pathogenic and be-
nign variants.

(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 15: CADD variable separation. Note that pathogenic variants have a higher
CADD score than benign variants, but the separation is incomplete.

It is important to note that the CADD authors carried out an experiment to determine
how well its measure correlated with ClinVar pathogenic variants. However, in the CADD
study, they defined benign variants as any variant with an allele frequency in the general
population of over 5%. This definition of benign variants, and hence benign classification,
is not useful for this study. The model being built in this study looks to distinguish low-
frequency pathogenic variants from low-frequency benign variants [33]. Therefore, using
CADD alone to determine pathogenicity of low-frequency variants based on this study
may not be the most effective tool.

7.5.4 Parameter 4: Protein Consequence

As discussed in section 1.4, genetic disease is most often caused by changes in the amino
acid sequence of a protein. Protein consequence answers two different questions:

1. Does the variant change the amino acid in a protein?

2. Does the variant change the amino acid type in a protein/is it a conservative or
nonconservative mutation?

The answer to question #1 simply rests on whether the variant causes an amino acid
change. When an amino acid is changed, the likelihood of pathogenicity increases due to
the chance the amino acid change may alter the protien in a damaging way. However, the
answer to question #2 is related to amino acid type. Amino acids were grouped into six
separate categories as shown in Table 4. There are many different ways to group amino
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acids, according to Dagan et al. and Zhang [34, 35]. This grouping looked to differentiate
amino acids based on their polarizability and aromaticity. However, many other group-
ings of amino acids may exist, and future studies may explore the efficacy of different
groupings. If a variant did not cause an amino acid change or changed an amino acid to
one in the same category, it was called a conservative mutation. If a variant caused an
amino acid change to one of a different category, it was called a nonconservative mutation.

Table 4: Types of Amino Acids for Conservative Mutation Analysis

Type Amino Acids
Positive Arginine, Histidine, Lysine
Negative Aspartic Acid, Glutamic Acid
Polar Serine, Threonine, Asparagine, Glutamate, Cysteine

Aromatic Tyrosine, Tryptophan, Phenylalanine
Nonpolar Methionine, Glycine, Alanine, Valine, Leucine, Isoleucine, Proline

Nonconservative mutations would be expected to more likely cause genetic disease, as
the structure of a protein, and hence the function, would be more likely to change if an
amino acid with completely different properties replaced another amino acid.

The plots that view separation between these two parameters are shown in Figure 16 for
amino acid change, and Figure 17 for conservative/nonconservative change. These mosaic
plots illustrate separation by distinguishing pathogenic/benign variants as black/grey
boxes, respectively. Separation can be seen for each parameter, but is not complete.

(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 16: Amino acid change variable separation. Note that most pathogenic variants
involve an amino acid change, and most benign variants do not involve an amino acid
change. However, separation is not complete.
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(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 17: Conservative/nonconservative mutation variable separation. Note that most
pathogenic variants involve a nonconservative amino acid change, and most benign vari-
ants involve a conservative amino acid change or no amino acid change. However, sepa-
ration is not complete.

7.5.5 Parameter 5: Splice Site Pathogenicity

Genes include regions known as introns and exons. Introns are regions of genetic code
that are not translated into protein. Exons are regions of genetic code that are translated
into protein. However, RNA polymerase translates both of these regions into mRNA from
DNA. Therefore, before the mRNA is translated into protein, the introns in the mRNA
are removed in a process known as splicing. This is shown in Figure 18a. If mutations
occur in the splice site, errors in splicing can cause introns to be inserted or exons to be
removed, as illustrated in Figure 18b, which ultimately will effect protein structure and
may cause disease.

Originally, a separate predictor for splice site variants was not to be used in the model.
However, a majority of the incorrectly classified genetic variants according to models with-
out the predictor for splice site variants were splice site variants. We then incorporated
the database of single nucleotide variants within splicing consensus regions (dbscSNV)
into the model. dbscSNV is a database produced by Jian et al. that uses eight splicing
disease predictors and correlates them with genome-wide pathogenicity databases [36].
It ranks splice sites on the likelihood of being pathogenic from 0 (most likely benign) to
1 (most likely pathogenic).

It is important to note that the dbscSNV database only includes values for splice site
variants. Exonic or other non-splice site intronic regions do not have a dbscSNV score. To
incorporate this into the model, a value of “1” was given for a dbscSNV score at or above
0.6, and a value of “0” was given to a dbscSNV score below 0.6 or if a dbscSNV score was
not recorded for a variant. Figure 19 shows the variable separation between pathogenic
and benign variants for the dbscSNV score. Note how in Figure 19, indicated splice site
mutations include mostly pathogenic variants. However, many pathogenic variants are
left out of the predictor.
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(a) Normal splice site (b) Altered splice site

Figure 18: Splicing occurs between Pre-mRNA and mature mRNA after splicing. It
removes introns from the pre-mRNA transcript and assembles exons together, which are
then used to create a protein. Figure 18a shows how a splice site operates normally, and
Figure 18b shows an altered splice site and its potential effects. In the altered splice
site, a splice site mutation causes intron 2 to be left in the final mRNA transcript, which
causes altered protein structure.

(a) MYH7 only (b) MYBPC3 only (c) MYH7 + MYBPC3

Figure 19: Variable Separation for the splice indicator parameter. Note that although it
does not distinguish pathogenicity among all variants well, it selects splice site variants
that are pathogenic that would have been classified as benign without previous analysis.

7.5.6 Overview of Parameters

A brief summary of the parameters used:

1. Allele Frequency: how common is the allele in the population?

2. Genetic Conservation: how much has the genetic location remained the same over
the course of evolution?

3. CADD: how much is the variant selected against over evolution?

4. Protein consequence: how does the variant change the protein?



44

5. Splice site indication: is the splice site affected in a way that may alter the protein?

Each of these parameters distinguish between pathogenic and benign variants in MYH7
and MYBPC3, however do so incompletely. This indicates that each parameter may
be useful in a logistic regression model, yet the final logistic regression model will likely
require more than one parameter to best separate the variables.

7.6 Creating and Optimizing the Logistic Regression Models

The statistical software R was used to create three sets of 128 independent logistic re-
gression models that each used a different set of parameters. The R package MuMIn
was used with the function dredge() to attain all possible combinations of parameters
[37]. However, models were selected to reduce “double-dipping,” or counting the same
parameter twice. Because GERP and Vertebrate PhyloP (VerPhyloP) each measured
conservation, models that used both GERP and VerPhyloP were excluded. CADD also
used GERP and VerPhyloP in its own model calculations, and so models that included
GERP or VerPhyloP with CADD were also excluded. The three sets of data used for
the logistic regression models were MYBPC3 variants alone, MYH7 variants alone, and
MYBPC3 and MYH7 variants together.

7.6.1 The Akaike Infromation Criterion

The Akaike Information Criterion (AIC) was used to determine the “best” model of the
128 models tested. Equation 3 gives the formula for the AIC. The AIC is composed of
two different factors: the likelihood (L̂) and the number of parameters (k). The likeli-
hood is an indicator of how well the model fits the training data. If the model is a better
predictor of the pathogenicity of the ClinVar known pathogenic or known benign variants
in MYH7 or MYBPC3, the likelihood will increase. This will, in turn, cause the AIC to
become lower.

The second factor (k) is a penalty for additional parameters: the more parameters in-
cluded in the model, the larger the penalty. This prevents the model from overfitting.
Overfitting occurs when a model includes so many parameters that it fits the training
data well, but does not generalize to other datasets well. To prevent this, unnecessary
parameters are penalized in the AIC. Ultimately, a lower AIC is considered a “better”
model. However, the AIC is just one of many factors that must be taken into account in
order to determine which model is the best. The parameters used must also be taken into
account to see if one model makes sense more than another. An example of this may be
a model that uses two redundant parameters: two parameters that measure almost the
same thing. Even though the addition of one may improve the model’s fit marginally, it
will not significantly improve the model enough for the addition of the second parameter
to be useful.

AIC = −2ln(L̂) + 2k (3)

7.6.2 Running the Models

Each of the 128 models were run using R and the AIC was recorded for each. 64 of the
128 models fit the criteria of not including CADD with Gerp or Vertebrate PhyloP, and
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Table 5: Top 5 Models According to AIC
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122 11 2 3 16 2
44 4 9 4 17 3
45 2 10 6 18 4
110 10 7 2 19 5

not including Gerp and Vertabrate PhyloP together. “Running” models means execut-
ing R statistical software code while the R program performs machine learning to fit a
model. Models were ranked by AIC for each of three separate datasets: for MYBPC3
variants alone, MYH7 variants alone, and MYBPC3 and MYH7 variants together. The
“best” model was determined by finding the model that on average performed the best
on each dataset by adding up the AIC ranking of the model from each dataset. The top 5
models are shown in Table 5, and all 64 models are shown in Supplementary Table S1. A
parameter filled in black in the table indicates that the parameter was used in the model.

As shown by Table 5, the actual models that have the lowest AIC for each dataset dif-
fer. This indicates that the parameters for each gene give slightly different indicators of
pathogenicity, and indicates that generalizing a model to fit all genes may be less accurate
than generalizing a model to fit fewer genes or a single gene.

The model that appears to generalize best according to all three datasets was found to
be model #46, which includes the parameters allele frequency, CADD, splice indicator,
and amino acid change. This model was used to predict variants that are pathogenic but
not found in ClinVar further in this study.

7.6.3 Setting the Cutoff

The “cutoff” is a value that, when the model returns a value greater than for a specific
variant, the variant will be classified as “pathogenic.” To find the most appropriate value
for the cutoff, a Receiver Operatic Characteristic (ROC) curve was used. The ROC curve
plots True Positive Rate (TPR, also known as the sensitivity; Equation 4) against False
Positive Rate (FPR; Equation 5).

TPR or Sensitivity =
Pathogenic variants identified by model

Total actual pathogenic variants
(4)
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The true positive rate increases when the model becomes better at identifying if an ac-
tually pathogenic variant is pathogenic. If the model identifies every actual pathogenic
variant as “pathogenic,” the TPR will be an ideal value of 1. The TPR will always be
1 if a cutoff for calling a variant pathogenic occurs at 0% chance of pathogenicity, and
will always be 0 if a cutoff for calling a variant pathogenic occurs at 100% chance of
pathogenicity.

FPR =
Pathogenic variants identified by model but NOT actually pathogenic

Total variants actually NOT pathogenic
(5)

The false positive rate increases when the model becomes worse at distinguishing which
variants are benign, or not pathogenic. If the model identifies every benign variant as not
pathogenic, the FPR will be an ideal value of 0. The FPR will always be 0 if a cutoff for
calling a variant pathogenic occurs at 0% pathogenicity, and will always be 1 if a cutoff
for calling a variant pathogenic occurs at 100% pathogenicity.

Figure 20: ROC curve for Optimal Model (model #46). FPR and TPR are maximized
at a cutoff of around 0.7

An ROC curve plots TPR vs. FPR for a given model cutoff. The model cutoffs on the
ROC curve are shown as different colors. In the case of Figure 20, which is an ROC
curve for the optimal model using the combined MYH7+MYBPC3 variant dataset, red
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represents a frequency cutoff of ∼ 100% pathogenicity, yellow represents a frequency cut-
off of ∼ 75% pathogenicity, green represents a frequency cutoff of ∼ 50% pathogenicity,
and dark blue represents a frequency cutoff of ∼ 0% pathogenicity. The ideal cutoff will
maximize TPR while minimizing FPR, and can be found in the upper left corner of the
ROC curve. In this case, a frequency cutoff of ∼ 70% pathogenicity was chosen that
maximized TPR (∼ 0.95) and minimized FPR (∼ 0.01). This means that for this model
and this cutoff, the model was able to detect ∼ 95% of the known pathogenic variants,
and only called ∼ 1% of the known benign variants pathogenic.

7.6.4 Cross-Validation: Sensitivity and Specificity

Table 6: Cross-Validated Model Performance, Cutoff = 0.7

Variants Classi-
fied by model as
pathogenic

Variants Classi-
fied by model as
benign

Actually Pathogenic Variants (ClinVar) 85 5
Actually Benign Variants (ClinVar) 1 345

Once a cutoff has been set, the model has been successfully “trained,” and created opti-
mally to predict undiscovered pathogenic variants in MYH7 and MYBPC3. However, in
order to assess how well the model performs with regard to new data, we perform cross-
validation. Because our dataset is so small, we perform leave-one-out cross-validation.

Traditional validation techniques normally use partitioning of data into two random sets:
a training dataset (70% of data) and a testing dataset (30% of data). The training
dataset is used to create the model, and then the testing dataset is used to see how the
model performs on new data that the model was not trained on. However, because of our
limited dataset size which includes only 90 pathogenic variants, we believe that partition-
ing data into these two datasets may cause the testing dataset to lose modeling capability.

Leave-one-out cross-validation (LOOCV) is a statistical technique that allows all of the
data to be used as a training set (this is what is described in the previous sections by
creating the model). However, LOOCV allows us to explore how well the model we
create performs on new data. LOOCV works by taking all of the data and removing
one datapoint (in this case, one variant). A new model is created and trained with the
remaining datapoints, and the datapoint “left out” is predicted based off of the model
created from the other datapoints. This process is repeated, leaving every single data-
point in the dataset out and creating the same number of models as datapoints. The
model prediction for each datapoint “left out” is used to validate the model.

We used a cutoff of 0.7 and used LOOCV to validate the model we created to predict
variant pathogenicity in MYH7 and MYBPC3. The results of this validation are displaed
in Table 6. From these results, we can determine the sensitivity and specificity of this
model validation. The sensitivity is the same as the true positive rate (TPR; defined in
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Equation 4) and determines the proportion of correctly identified positives. The speci-
ficity, or the true negative rate, measures the proportion of correctly identified negatives
and is defined in equation 6.

Specificity =
Total variants actually NOT pathogenic

Total variants identified by model as NOT pathogenic
(6)

Having a high sensitivity indicates that the model will find most people with disease.
Having a high specificity indicates that the model will not flag people as diseased when
they actually do not have disease.

Table 6 illustrates that 85 variants were correctly identified as pathogenic by the model,
and five variants that were actually pathogenic were classified as benign. This indicates
a sensitivity of 85/90 = 94.4%. Additionally, 345 variants were correctly classified as
benign, and one variant that was classified as pathogenic was actually benign. This
indicates a specificity of 345/346 = 99.7%. Based on the sensitivity and specificity results
from this model, we conclude that this model performs well in predicting the pathogenicity
of variants, without overclassifying variants as pathogenic.
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8 Methods of Cost/Benefit Analysis

In order to determine how effective genetic screening may be in the military, a cost/benefit
analysis was performed. The cost/benefit analysis attempted to determine the monetary
cost and benefit of the implementation of genetic screening and other HCM screening
methods in military populations in addition to the effectiveness of the tests as screen-
ing tools. This was done through producing a multi-step simulation. However, several
limitations exist for this analysis. The cost/benefit analysis does not directly account
for capital costs that may be required to initiate genetic screening or any other type of
screening in the military population, additional strain on the healthcare system, or the
psychological impact of a false positive result. This cost/benefit analysis looked to ana-
lyze the cost and benefit of the implementation of genetic screening, and other screening
tests, for Hypertrophic Cardiomyopathy in the military population using only the genes
MYBPC3 and MYH7. Other conditions and genes were not included in the simulation,
however a discussion on how additional conditions or the inclusion of additional genes
may alter the cost/benefit numbers is included in Section 13.

This cost/benefit analysis compared six different cases, or six different scenarios in which
individuals with HCM are screened for. For each case, the cost of the screening, as well
as the cost of the resulting deaths due to SCD from HCM were recorded. The six cases
compared are outlined in Table 7.

Table 7: Cases Being Compared in Cost/Benefit Analysis

Case 1 No screening for HCM implemented

Case 2 Echocardiogram screening only, maximum accuracy settings

Case 3 Genetic screening followed by echocardiogram screening for positive
genetic test, maximum accuracy settings

Case 4 Echocardiogram screening only, maximum specificity settings

Case 5 Genetic screening followed by echocardiogram screening for positive
genetic test, maximum specificity settings

Case 6 Genetic screening only

8.1 Simulation of HCM in a Military-like population

Before monetary costs are brought into the picture, it is necessary to simulate exactly
how genetic screening would perform in detecting individuals with HCM that will die of
SCD during their military carrer. To do this, a simulation was created that models HCM
in a real-life military population.

Ultimately, these simulations look to answer the following questions that are unrelated
to costs:

1. Which individuals have a pathogenic variant for HCM?

2. Which individuals actually have HCM?
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3. Which individuals that have or do not have HCM have or do not have a pathogenic
variant?

4. Which individuals that have HCM will die of sudden cardiac death (SCD) during
thier military careers?

5. How many individuals with or without HCM were identified by screening tests in
cases 1-6?

6. Which individuals that died from SCD were identified by screening tests?

Figure 21 gives an overview of how the simulation will operate. First, a population of
genomes will be created, and a population of individuals that have pathogenic variants
in the population will be identified. Then, individuals will be assigned as “having HCM”
or “not having HCM” based on the presence of a pathogenic variant in their genome
(there will be a certian probability that an individual with a variant will have HCM,
and a certain probability that an individual without a variant will have HCM). The six
different screening cases will then be simulated. Finally, the simulation will determine
which individuals with HCM will die of sudden cardiac death (SCD) throughout their
military career.

The “genome simulation” in figure 21 will be explained in sections 8.1.1 and 8.1.2. The
“disease simulation” will be explained in section 8.1.3. The “Sudden Cardiac Death”
simulation will be explained in section 8.1.4, and the screening cases will be explained in
sections 8.3, 8.2, and 8.6.

Figure 21: Overview of simulation

8.1.1 Predict Which Variants cause HCM

ClinVar and the model created in section 7 serve to determine which variants will most
likely lead to hypertrophic cardiomyopathy (HCM).
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With a cutoff of 0.7, set by using the ROC curve, the model classifies 1,272 variants as
pathogenic, and 1,184 of those variants were not found in ClinVar. There were 4,654 vari-
ants found in the gnomAD database for these two genes, which means 27.4% of variants
are classified as “pathogenic” by the model. The total frequency of all variants classified
as pathogenic is 1.9% of the population (assuming all variants are independently present
in individuals as determined in section 7.4). This means that if all pathogenic variants
were used in a screening test, 1.9% of the population would be classified as having a
pathogenic variant.

Because no data exists to prove or disprove the pathogenicity of the 1,184 variants the
model classified as pathogenic but were not found in ClinVar, it cannot be assumed that
the pathogenic variants according to the model are either completely pathogenic or com-
pletely benign.

Figure 22: Variants are ranked according to their presence in ClinVar and their model
score. Those variants found in ClinVar have the highest ranking (on the right), and
variants found to be pathogenic according to the model are ranked based on their model
score, with the higest model score ranking below the last ClinVar variant, and the lowest
model score having the lowest ranking.

To address this uncertainty, a “ranked-order list” of variants was created. This rank
order list consisted of all variants classified by the model as pathogenic and all of the
variants classified as pathogenic by ClinVar (regardless of their model score). The list
was ranked based off of the estimated likelihood that a variant may cause HCM. The
highest 90 ranked variants were the variants that, regardless of their model score, were
classified by ClinVar as pathogenic. These first 90 variants are considered to have equal
ranking. The next variants on the list consist of the variants classified by the model as
pathogenic, but not classified by ClinVar as pathogenic. These variants are ordered on
the list based off of their model score, with the highest model score being the highest
ranking variant (closest to the ClinVar variants), and the lowest model score being the
lowest ranking variant (farthest away from the ClinVar variants). Figure 22 shows an
illustration of how these variants were ranked.

This ranked variant list was used in the cost-benefit analysis to determine which variants
to classify as pathogenic. In the analysis, a range of “rank cutoffs” were used, with all
variants ranked higher than the cutoff being called pathogenic. This is illustrated in
Figure 23.
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Figure 23: The ranked variant system allows the classification of pathogenic variants to be
varied for the cost/benefit simulations. A cutoff may be set at any point along the ranked
variant list, and all variants ranked above that cutoff will be classified as pathogenic.
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8.1.2 Determining Variation of Pathogenic Variants in Populations

Once a list of variants has been determined, populations of individuals that have the
variants must be created.

Although the gnomAD database gave a frequency in the gnomAD population of a par-
ticular pathogenic variant, the confidence and variation in this number among different
populations is an important consideration in discussing the cost/benefit analysis of ge-
netic screening. GnomAD is a fixed population of individuals with a fixed frequency
per variant. However, it is likely that different populations will randomly have different
ranges of frequency of the variants. To account for this and to assess the variation in
the ultimate frequency of pathogenic variants in a general population, simulations were
performed according to the steps below and Figure 24.

1. Take genome with reference variants: this genome will have all reference, or common
benign variants.

2. Using the frequency of each individual pathogenic variant found in gnomAD, sim-
ulate the number of pathogenic variants that will be in the genome. In the genome
in Figure 18, genetic location #2 has a 5% chance of a T → G pathogenic variant
occurrence, genetic location #4 has a 0.02% chance of a C→ T pathogenic variant
occurrence, and genetic location #8 has a 0.01% chance of a T → C pathogenic
variant occurrence.

3. As discussed in section 8.1.1, a range of cutoffs are being set for pathogenic variants
on the ranked variant list. However, in the case of this analysis, a population of
genomes will be created first that contains all 1,276 variants on the ranked variant
list. After this population is created, the cutoff will be set, and the frequency of
individuals with the particular variants of interest will be found as a part of this
total population. This frequency is the number that will be used in the simulations
moving forward. This allows the range of selected cutoffs to be performed on the
same population of genomes, which is important for comparative analysis of how
each cutoff performed.

4. Did any pathogenic variants (according to the cutoff) show up in the simulated
genome? In the first case in Figure 24, no pathogenic variant occurred in the
simulated genome.

5. Repeat this simulation carried out in steps 1-4 many times equal to the average
population of military accessions to attain a figure for the military population.

6. Calculate the frequency of selected pathogenic variants in the genomes of this sim-
ulated population. In the case of the population simulated in Figure 24, 1/10
individuals, or 10% of the population, has a pathogenic variant.

7. Simulate many (1,000) populations using steps 1-5 to attain a distribution of the
frequency of variants in populations. This set of populations will be used further
in the cost/benefit analysis to come up with a distribution of costs that will vary
for different random populations.
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Figure 24: Simulation of populations. Certain locations in the reference genome have
independent chances of being pathogenic for each individual. For each population, the
frequency of individuals with a pathogenic variant was calculated. For a large number
of random populations, the frequency of pathogenic variants in each population should
have a range of values. Populations and genomes in this figure are not to scale.
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8.1.3 Predicting HCM from Genetic Makeup

After populations of individuals have been created that have or do not have pathogenic
variants, it will be determined if an individual has HCM. As stated previously, having a
pathogenic variant does not guarantee that an individual will have disease, and not hav-
ing a pathogenic variant does not guarantee that an individual will not have disease. This
is due to the many multivariable causes of disease that include different genes, unknown
variants, and environmental factors. However, having a variant may greatly increase the
chances that an individual has disease.

Since we already know which individuals have a pathogenic variant and which individ-
uals do not have a pathogenic variant from procedures in sections 8.1.1 and 8.1.2, to
simulate which individuals have HCM and which do not, the probability that an indi-
vidual will have HCM if they have a variant, P (HCM |V AR), and the probability that
an individual will have HCM if they do not have a variant, P (HCM |V ARC), need to
be calculated. The probability that an individual will have HCM if they have a vari-
ant, P (HCM |V AR), is also known as the penetrance. The penetrance can be found
through literature for most known variants in ClinVar [5], however for undiscovered vari-
ants, the penetrance may have a very wide range of values. Additionally, the value of
P (HCM |V ARC) was not found in literature. Because of these uncertainties, we did
not set a value for P (HCM |V AR) directly. Instead, we calculated P (HCM |V AR) and
P (HCM |V ARC) based off of equations 7 and 8 using Bayes’ theorem.

P (HCM |V AR) =
P (HCM)P (V AR|HCM)

P (V AR)
(7)

P (HCM |V ARC) =
[1− P (V AR|HCM)]P (HCM)

1− P (V AR)
(8)

There are three values that must be found in order to use these equations:

1. P (HCM): this is the probability of having HCM in the general population. This
was found through the literature to be 1 in 500 individuals (0.002) [3].

2. P (V AR): This is the probability of having a pathogenic variant in the general
population. This was found by setting a cutoff for the ranked variant list discussed
in 8.1.1, and adding up all of the gnomAD frequencies of the pathogenic variants
on the ranked variant list below the selected cutoff. The resulting frequency was
P (V AR).

3. P (V AR|HCM): This is the probability of having a pathogenic variant as classi-
fied by our ranked variant list given that someone has HCM. The literature agrees
that for all variants in MYH7 and MYBPC3, this value is 0.8; or, that 80% of
individuals with HCM will have a pathogenic variant in MYH7 and MYBPC3 [4].
However, we cannot assume that P (V AR|HCM) = 0.8 will be the value that our
screening test will perform at because the ranked variant list built by the model
may miss some pathogenic variants. We chose to vary this number from 0.5 to 0.9
to give a range of possible values. A value of P (V AR|HCM) = 0.5 indicates that
if an individual has HCM, there is a 50% chance that they will have a pathogenic
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Figure 25: Calculating P (HCM |V AR) and P (HCM |V ARC). P (V AR) is modi-
fied through changing the cutoff of the ranked variant list, and different values of
P (V AR|HCM) are used from 0.5 to 0.9.

variant as classified by our ranked variant list AND below the cutoff we set on that
list. We vary this number to see how it will affect the cost and benefit of genetic
screening in the military.

As noted above, in these calculations, only P (HCM) will remain constant. P (V AR)
and P (V AR|HCM) will both vary for different cutoffs set in the ranked variant list, and
different values of P (V AR|HCM) being chosen. Therefore, the values of P (HCM |V AR)
and P (HCM |V ARC) will also vary for these two values. This is shown in Figure 25.

We chose at the beginning of this simulation to see how plausible different rank cut-
offs in the ranked variant list were. We calculated, from a certain rank cutoff on the
ranked variant list, P (V AR), P (HCM |V AR), and P (HCM |V ARC) for varying values
of P (V AR|HCM). Forward, the “# of variants” in the simulation refers to the number
of variants that are included in the simulation from the rank cutoff list. For example, a
# of variants = 100 indicates that the first 100, and only the first 100, variants on the
ranked variant list were classified as pathogenic and causing HCM.

First, we made sure that the values of P (HCM |V AR) were plausible. We calculated
P (HCM |V AR) for rank cutoffs from 90 to 1,276 (the entire length of the ranked variant
list. The penetrance, another name for P (HCM |V AR), was found empirically in studies
to be approximately 0.7, meaning that 70% of individuals who have a known ClinVar
pathogenic variant actually have HCM [5]. However, the penetrance may be different for
different variants, and the penetrance of undiscovered variants uncovered by the model
may be lower than those of discovered pathogenic variants in ClinVar. However, a pene-
trance below P (HCM |V AR) = 0.3 is not probable, as it is much lower than the values
found empirically. Values of P (HCM |V AR) below 0.3 were not considered realistic. Ad-
ditionally, a P (HCM |V AR) that is too high (0.8 and above) is less probable as well, and
a P (HCM |V AR) that is calculated to be greater than 1 is statistically impossible.

From the analysis of different possible values for the # of variants and P (V AR|HCM),
we found that P (HCM |V AR) increased with an increased value of P (V AR|HCM) and a
decreased # of variants. It was found that some scenarios with a low # of variants and
a high P (V AR|HCM) had a P (HCM |V AR) that exceeded 1, and a large # of variants
(over 400) caused P (HCM |V AR) to be below 0.3. This is illustrated in Figure 26. It was
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Figure 26: P (HCM |V AR), or penetrance, plotted against the number of variants in-
cluded from the ranked variants list. a P (HCM |V AR) below 0.3 and above 1 was consid-
ered unrealistic. Due to this, the maximum number of variants included from the ranked
variant list in the simulations will be 400, as a ranked variant list of length 400 gives a
P (HCM |V AR) of approximately 0.3 for an intermediate value of P (V AR|HCM) = 0.7
(with the values of P (HCM |V AR) increasing for larger values of P (V AR|HCM)).

decided that the intermediate value of P (V AR|HCM) of 0.7 would decide where to set
the maximum number of variants allowed in the simulation. The value of P (HCM |V AR)
was 0.3 at approximately when P (V AR|HCM) = 0.7 and the # of variants = 400. Be-
cause of this, the maximum number of variants included in the simulation from the ranked
variant list was 400. In the simulation, values for the # of variatns of 90, 100, 110, 120,
130, 140, 150, 160, 170, 180, 190, 200, 300, and 400 variants were used; and values of
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 and 0.9 for P (V AR|HCM) were used, excluding
combinations where the P (HCM |V AR) > 1. 119 total combinations resulted.

From this analysis, it can be seen how P (HCM |V AR) varies with changing # of variants
and P (V AR|HCM). Figure 27 illustrates how P (HCM |V AR) changes.

From the calculated P (HCM |V AR) and P (HCM |V ARC), the simulation may continue
and may assign individuals as having HCM or not having HCM. The simulation will
assign individuals as having a pathogenic variant or not having a pathogenic variant
through the methods in section 8.1.1 and 8.1.2. Figure 21 shows how the probabilities
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Figure 27: Varying of P (HCM |V AR) (penetrance) with selected values of
P (V AR|HCM) and the # of variants used from the ranked variant list. Green indicates
a more probable value, yellow less probable, and red an impossible value. Combinations
of # of variants and P (V AR|HCM) that return red penetrance values will not be
run in this simulation. Note how the P (HCM |V AR) increases with increasing values of
P (V AR|HCM) and decreases with increasing values of the # of variants.

P (HCM |V AR) and P (HCM |V ARC) will be used in the simulation. If an individual
has a pathogenic variant, the chance they will have HCM is P (HCM |V AR) for the
given P (V AR|HCM) and # of variants, and the chance the will have HCM if they
do not have a pathogenic variant is P (HCM |V ARC) for the given P (V AR|HCM) and
# of variants. In all figures, the probabilities noted inside the arrows indicate how each
subsequent group will be determined. Population representations in all figures are not to
scale.

To demonstrate that this method effectively and accurately assigned individuals as having
HCM in populations, the frequency of HCM was analyzed for the simulated populations
created. The goal of the simulation is to have a relatively constant frequency of HCM
to be 0.002, with values varying to a small extent between populations to account for
random error. Figure 28a displays a heatmap of the average disease frequencies over
1000 simulated officer populations for each value of P (V AR|HCM) and # of variants,
and figure 28b displays a histogram of the freqency of HCM for 119,000 simulated officer
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populations, 1000 populations for each of the 119 P (V AR|HCM) and # of variants
combinations. The heatmap values are consistently seen to be averages of 0.002, and the
histogram shows a distribution with 95% of the values between 0.0019992 and 0.0020046.

(a) Heatmap of Officer Simulation
σ : {0.00032, 0.00034, 0.00034, 0.00035, 0.00036}1

(b) Histogram of Officer Simulation
μ = 0.0020019, σ = 0.00047

Figure 28: Distribution of frequency of HCM for the officer simulation. Generally ac-
cepted in literature to be 0.002 [3], this simulation produces the frequency of HCM at an
accurate value with some variation.

8.1.4 Predicting Sudden Cardiac Death (SCD)

Sudden cardiac death (SCD) will be calculated using the probability that an individual
has SCD given they have HCM, P (SCD|HCM). This was found from literature to be
on average 0.0081 per person per year [6, 38]. In this simulation, SCD will be calculated
by taking an individual with HCM, and simulating the number of years they are in ser-
vice. For each year, the chance they die of SCD is 0.0081. This is illustrated in Figure 29.

It is important to note that no accurate figure for the probability of SCD has been es-
tablished for individuals who consistently exercise, as is common in the military. It is
predicted that individuals who exercise regularly will have a higher incidence of SCD
than those who do not, however, no data exist to determine how great the increase in
risk is. Therefore, we will assume for this simulation that the rate of SCD due to HCM
is the same as the general population.

Once all of the following simulations are complete, the questions listed in section 8.1 can
be answered. A summary of all of the probabilities used in the simulation and how they
were determined is located in Table 8.

1Standard deviations were taken for each of the 119 combinations of P (V AR|HCM) and
# of variants for the 1000 populations simulated for each combination. The standard deviations listed
here, and below every heatmap, are given to represent an overview of the range of the standard deviations
among the 119 combinations. The standard deviations for all heatmaps are listed as: minimum, 25th
quantile, median, 75th quantile, maximum. A discussion on variation in these results is found in Section
11.



60

Figure 29: Sudden Cardiac Death (SCD) Simulation. Representing individuals who each
serve for 5 years. Individual 1 has HCM, but makes it through all 5 years without SCD.
Individuals 2 and 3 have SCD some point in their career. Individual 4 does not have
HCM, and so has no chance of developing SCD in this simulation.

Table 8: Probability Values for Cost/Benefit Analysis

Probability Symbol Value

Probability of having disease in
general population

P (HCM) 0.002

Probability of having a variant in
general population

P (V AR)

Found from ranked variant
list and frequencies of
pathogenic variants in

gnomAD

Probability of having a pathogenic
variant given disease

P (V AR|HCM)
Set to a range of values
based on ranges found in

literature (0.5-0.9)

Probability of having a variant
given absence of disease

P (V AR|HCMC) P (V AR)−P (HCM)P (V AR|HCM)
1−P (HCM)

Probability of having disease given
variant

P (HCM |V AR) P (HCM)P (V AR|HCM)
P (V AR)

Probability of having disease given
not having variant

P (HCM |V ARC) 1−P (V AR|HCM)
1−P (V AR)

Probability of dying from sudden
cardiac death per individual per

year given having disease
P (SCD|HCM) 0.0081 per year
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8.2 Simulate Genetic Screening

Individuals that have a pathogenic variant according to the model cutoff will be identi-
fied by genetic screening. It is the genome, not the diseases status, that determines if an
individual will be identified by genetic screening.

We assume in this simulation that if an individual has a pathogenic variant, genetic
screening will be able to detect its occurrence. Next generation sequencing can call areas
of greatest interest in genomes with an accuracy above 99.99% [39]. Because of this high
accuracy of next generation sequencing and further development in accuracy, we assume
that the it will be able to detect all pathogenic variants. Additionally, we do not desire
to assign a particular accuracy or Q-score to a genetic test, because we do not desire to
explicitly define the type of genetic test that is taking place in this simulation.

8.3 Simulate Echocardiogram Screening

As discussed in Section 7.2.1, echocardiograms are the typical tool for diagnosis of HCM.
The image of the left ventricle given by an echocardiogram allows physicians to deter-
mine if the left ventricular walls are enlarged. However, there are different definitions
for “enlarged” left ventricular walls, and the accuracy, sensitivity and specificity for each
definition differs.

In this simulation, we test two definitions used by echocardiography, as defined by Rodday
et al. First, a “max accuracy” setting that maximizes true positive rate and minimizes
false positive rate (is at the upper left corner of the ROC curve as discussed in Section
7.6.3). A second definition, “max specificity” maximizes specificity (reduces false pos-
itives), while sensitivity decreases (false negatives increase). The values for sensitivity,
specificity, false positive rate, and true positive rate are displayed in Table 9 [12].

Table 9: Probability Values for Echocardiogram [12]

Condition Sensitivity Specificity False Positive Rate

Max Accuracy 0.851 0.851 0.149
Max Specificity 0.607 0.999 0.001

These values were used in the simulation to determine who receiving an echocardiogram
test will be identified as having HCM or not having HCM. To do this, if an individual
in the simulation had HCM (having HCM was determined through simulation in section
8.1), the chance they were classified as “having HCM” by the echocardiogram was the
sensitivity, or true positive rate. If an individual did not have HCM, the chance they
were classified as “having HCM” by the echocardiogram was the false positive rate (FPR).
Figure 30 illustrates this determination.



62

Figure 30: Echocardiogram screening simulation. Individuals were determined to have
HCM in Section 8.1. If an individual had HCM, the TPR of the echocardiogram con-
dition was used to determine the chance an individual was identified as having HCM.
If an individual did NOT have HCM, the false positive rate was used as the chance an
individivudal in this group was identified as “having HCM.”

8.4 Costs

Since part of the goal of the cost/benefit analysis is to determine what screening option of
the six cases in Table 7 would be best financially, the actual financial cost of the screening
options must be taken into account, as well as the cost of not screening individuals. All
cost measurements in this analysis are done using the United States dollar value in March
of 2018.

Costs associated with sudden cardiac death include the benefit recuperation and cost
associated with a death (“death cost”) in the military in addition to the costs lost due
to training an individual who is unable to perform their duties (“lost training cost”).
Costs were split between officers and enlisted. The death cost remains the same between
officers and enlisted, however the training cost for officers is significantly higher than for
enlisted, due to the expensive training costs incurred from service academies, ROTC,
OCS, flight training, and specialized community training. Expanded training costs were
only found for Naval Officers. It is an assumed that Army and Air Force officers will have
approximately the same training costs as Naval Officers. It is also important to note
that depending on when an individual his died in their career, certain training costs may
not be classified as “lost,” as an individual may have utilized their training in a certain
specialty before they die if they die later in their career. This is not taken into account in
this simulation. An individual is considered to forfeit all of their training costs if a death
during any time in the military is recorded. The reasoning behind this assertion is that
only the initial training costs are included in this assessment (basic training, ROTC, and
early specialized community training). Any additional training an individual undergoes
later in their career is not accounted for. We are making the assumption that if an indi-
vidual dies while on active duty, the military will forfeit training cost from some source,
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Table 10: Costs Associated with Death in Military

Cost Value Reference

Death Cost $100,000 [40]
Officer Training $912,000 [41] Other brances offcier training cost as-

sumed to be equal to Navy
Enlisted Training $55,000 [42] Values include: direct training costs,

training support, labor training, and re-
cruitment and advertising costs. Values for
officers are subtracted from total values to
arrive at enlisted value.

which is included in this cost estimation. Table 10 lists the category of each cost asso-
ciated with a death in the military, its value, and the reference used to determine the cost.

Costs associated with medical tests include the cost associated with genome sequencing
and costs associated with an echocardiogram. Genome sequencing widely varies in cost,
and is constantly changing in cost. Additionally, the United States Medicare program
does not cover or maintain a price database for genetic sequencing. Because of this fact,
the cost of genetic sequencing is varied in this cost/benefit analysis from $10-$1,000.
Currently, an accurate estimate of the cost of whole-genome next generation genetic
sequencing is approximately $1,000, and the cost of microarray genetic test analysis ranges
from $30-$130 [28, 43]. However, this figure is rapidly changing due to technological
improvements and depends on many factors including the equipment and the cost of the
human labor associated with analysis. If the process of genomic screening is automated,
the cost may be brought down significantly. The cost associated with an echocardiogram
was found using data from FY 2015 as published in the Medicare cost database. Table
11 lists the category, value, and references of the cost of each medical procedure.

Table 11: Costs Associated with Medical Tests

Cost Value Reference

Genetic Test $10-$1,000 [28, 43]
Echocardiogram $2,506 Outpatient costs data, Medicare [27]. Used

national average value billed by hospitals.

Each of these costs were used in the calculation of the total cost for each respective case.
How the cost of each cases was calculated is illustrated in Table 12.
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Table 12: Cost of Cases

P = total population size
ppos. genetic test = population of individuals who have a positive genetic test
d = number of individuals that die from SCD due to HCM (case dependent)
Cdeath = cost of death gratuity
Ctraining = lost training cost
Cgenetic = cost of genetic test
Cecho = cost of echocardiogram

Case 1 d(Cdeath + Ctraining)
Cases 2 & 4 d(Cdeath + Ctraining) + PCecho

Cases 3 & 5 d(Cdeath + Ctraining) + PCgenetic + ppos. genetic testCecho

Case 6 d(Cdeath + Ctraining) + PCgenetic

8.5 Population size and Years in Service

An accurate representation of the population size of the military should be utilized in this
simulation. As stated previously, an enlisted population and an officer population will be
simulated seperatley due to the different costs associated with the two. Additionally, the
number of years in service and number of yearly accessions between the two groups differs.

The population size of the simulations tested represents the average number of military
accessions for Fiscal years 2013, 2014 and 2015 [44]. Table 13 displays these values. These
values will be used to create populations of individuals of the certain size.

The number of years in service for each group was found in a 2009 study on military force
numbers [44], also listed in Table 7. These numbers will be used in calculating the number
of individuals that die from sudden cardiac death. Figure 29 illustrates this calculation,
where the simulation will simulate the average number of years that an individual is in
the military, and for each year, there will be a P (SCD|HCM) = 0.0081 chance of dying
from sudden cardiac death due to HCM while in the military [6].

Table 13: Force Strength Values Used in Analysis

Item Value Reference

Enlisted Accessions 152,054
[44] Average FY13,FY14,FY15

Officer Accessions 16,721

Enlisted Average YOS 7 years
[7] Used 2009 value.

Officer Average YOS 11 years
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8.6 Simulation of Cases

Cases 1-6 are described in further detail below. It is important to note that, in each
population simulation, the same genomes, HCM positive, HCM negative, and SCD due
to HCM individuals were used for all cases. Each case simply reflects how individuals in
each population were detected or how many predicted deaths were prevented. Each sim-
ulation was tested on the same set of 1000 populations with equal individuals possessing
pathogenic variants, HCM, and predicted deaths.

Important to note is how individuals who are detected to have HCM are dealt with in
this simulation. If an individual has been detected to have HCM by a screening test, they
are discharged from the military before entry. We describe individuals with HCM that
have been discharged due to these tests as “prevented” deaths because the individuals
are given the opportunity to pursue treatment for their condition once the diagnosis is
made, perhaps saving their lives.

8.6.1 Case 1: No Screening

In this case, the simulation will be run, and all individuals that are predicted to die from
SCD due to HCM will do so without prevention. All individuals in the military will be
retained, regardless of HCM or genetic status. Figure 31 illustrates how this case will be
simulated.

Figure 31: Case 1 will have no interventions in preventing death from SCD due to HCM.
All individuals predicted to die from HCM in the simulation will do so.
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8.6.2 Cases 2 and 4: Echocardiogram Only Tests

In each case, the simulation will be run, and individuals who are positive for an echocar-
diogram test will be discharged. All individuals who have HCM will have a chance of
being detected equal to the sensitivity of the echocardiogram test, as outlined in Section
8.3 regardless of their genomic makeup. All individuals who do not have HCM will have
a chance of being falsely discharged equal to the false positive rate of the echocardiogram
test, as outlined in Section 8.3. This will generate two different populations of individuals
that are discharged for each echocardiogram test.
Figure 32 illustrates how this screening is simulated.

Figure 32: Cases 2 and 4 involve only echocardiogram tests. Shown here, the genetic
makeup of an individual does not matter for screening. Section 8.3 describes how echocar-
diogram screening is simulated.
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8.6.3 Cases 3 and 5: Genetic Screening Followed By Echocardiogram

In each case, the simulation will be run, and all individuals that have a pathogenic vari-
ant will undergo echocardiogram testing. Only individuals who are positive for both the
echocardiogram and the genetic test will be discharged.

This echocardiogram testing, however, will have the same results as the echocardiogram
testing that was done in cases 2 and 4 except that all cases with benign variants will not
be discharged. All individuals who had a positive echo from Case 2 and have a pathogenic
variant will be discharged in Case 3, and all individuals who had a positive echo from
Case 4 and have a pathogenic variant will be discharged in Case 5. Figure 33 illustrates
these cases.

Figure 33: Cases 3 and 5 involve both genetic screening and a echocardiogram follow-up.
This will be simulated by all individuals that have a pathogenic variant and had a positive
echo from the respective “echocardiogram only” test will be discharged. Only individuals
positive for both the echocardiogram and the genetic test will be discharged.
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8.6.4 Case 6: Genetic Screening Only

In this case, only a genetic test will be simulated. All individuals who have a pathogenic
variant in the simulation will be discharged, and all individuals who do not have a
pathogenic variant will be retained. Individuals with the variant and disease will be
true positives, individuals with the variant but not the disease will be false positives, in-
dividuals without the variant but with the disease will be false negatives, and individuals
without the variant and without the disease will be true negatives. Figure 34 illustrates
this case.

Figure 34: Case 6 involves only a genetic test.
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9 Results of Cost/Benefit Analysis

Both enlisted and officer simulations were run for all six cases, with the 119 combinations
of P (V AR|HCM) and # of variatns as described in Section 7. We now look to interpret
the results of these simulations.

Ultimately, this cost/benefit analysis looks to analyze:

1. How well do the cases detect HCM without classifying individuals who do not have
HCM as diseased?

2. How well do the cases prevent Sudden Cardiac Death caused by HCM?

3. What is the overall monetary cost or benefit of each case?

Each of these items will be explored in depth. Ultimately, we look to conclude which cases
perform the items enumerated above, and additionally conclude if some cases perform the
items enumerated above better only under certain P (V AR|HCM) and # of varaints
values. We also look to compare how the cases performed differently between officer and
enlisted simulations, and look to see what the results would be if the tests were used on
a combined officer and enlisted population.

Data is displayed in the subsequent sections for each case and each condition as averages
of the 1000 simulated populations that were created during this simulation. In other
words, each value displayed in a heatmap is an average value over the course of 1000
simulated populations. We provide the standard deviations below every heatmap where
appropriate, and discuss variation in the simulation in Section 11. We specifically use
averages in this analysis because the military will be most interested in reducing costs,
and the effect of the policies implemented, over the long run instead of being concerned
about extrema.

9.1 Performance of Cases: Detecting HCM

How well the tests detect HCM was analyzed through a various set of measurements.
These measurements work off of the principle of maximizing true positives and true
negatives while minimizing false positives and false negatives. A contingency table, Table
14 explains what these values are.

Table 14: Contingency Table For HCM Detection

Diseased NOT Diseased
Discharged True Positive False Positive
Retained False Negative True Negative

The absolute values of these numbers can be found in Appendix C, where the trends and
values for these absolute numbers are explored.
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In addition to looking at raw numbers expressed in Table 14, we also look to use mea-
surements that take the relative values of the conditions in the contingency table. These
measurements are defined and outlined in Table 15.

Table 15: Measures to Assess Detection of HCM

Measure Definition Desired Value

Specificity True Negatives
Total Negatives

1

Sensitivity True Positives
Total Positives

1

False Discovery Rate False Positives
False Positives+True Positives

0

False Omission Rate False Negatives
FalseNegatives+True Negatives

0

Accuracy True Positives+True Negatives
Total Population size

1

We look to analyze all of these measures in a methodical way. To do this, we outline here
the process we will use to analyze each parameter.

1. Analyze the absolute values of these measures of the officer cases. Officer cases will
be the first cases presented because of the greater cost of death an officer causes the
military. These absolute values will be displayed in a heatmap for all cases, with
each combination of P (V AR|HCM) and # of varaints. For all of the heatmaps,
red indicates a higher value, and yellow indicates a lower value. From this table,
we look to gather absolute numbers and descriptive concepts of trends in the data.

2. Display a graph where the measure being analyzed (for the officer case) is plotted
against changing values of # of varaints at a fixed value of P (V AR|HCM). This
will demonstrate how the measure changes for each case with changing # of varaints
while holding P (V AR|HCM) constant.

3. Display a graph where the measure being analyzed (for the officer case) is plotted
against changing values of P (V AR|HCM) at a fixed value of # of varaints. This
will demonstrate how the measure changes for each case with changing P (V AR|HCM)
while holding # of varaints constant.

4. As described above, how one variable changes while holding the others constant
for each case and for each measure will be found. However, it is possible that the
variables may interact with each other, and how one variable affects the measure
is dependent on the value of another. For example, a measure may increase and
have a positive intercept for an increasing # of variants if the constant value of
P (V AR|HCM) is 0.7, but the same measure may decrease and have a negative
intercept for an increasing # of variants if the P (V AR|HCM) is held at 0.9.
To determine whether this is occurring, we plotted the change in a measure for
each case while changing one variable and holding the other constant, and then
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changed the variable held constant to a different value and plotted the change for
the measure for the variable again to see if any differences occurred. Additionally,
value of ∂measure

∂# of varaints
was recorded for each constant value of P (V AR|HCM) used

in the simulation for each case, and the value of ∂measure
P (V AR|HCM)

was recorded for each
value of # of varaints used in the simulation for each case. The meaning of these
partial derivatives, and a more in-depth analysis of the interactions among variables
is found in Appendix A.

Each of these items will be discussed relating it to the significance of the results. After
the officer simulations are summarized, the same will be done for the enlisted simulations.
However, if the enlisted simulations result in the same values as the officer simulations,
figures will not be displayed in the text for the enlisted and combined simulations, and
will be placed in Appendix B.

9.1.1 Accuracy

Accuracy is an overall measure that takes into account how well a test both identifies
individuals who have disease and also identifies individuals who do not have disease. Its
definition in our analysis is:

Accuracy =
# discharged and diseased + # retained and NOT diseased

total population
(9)

We display in Figure 35 heatmaps for the average accuracy of the 1000 officer simulations
for each P (V AR|HCM) and # of varaints combination. In this figure, we can immedi-
ately see that cases 2 and 4 appear to have a constant accuracy measure, and cases 3 and
5 do not appear to fluctuate much at all. Case 6 does appear to fluctuate. We can also
see from these heatmaps that Case 2 appears to have a much lower accuracy than the
other cases. Cases 2 and 4 likely have unchanging accuracy numbers becasue they are
not genetic tests, and so should not change with the genetic variables P (V AR|HCM)
and # of variants.

In Figure 36, we display how accuracy changes with changing # of varaints with the
constant P (V AR|HCM) values of 0.5, 0.7 and 0.9 (chosen because they represent a range
of the P (V AR|HCM) values used in the study). We can see from these graphs that Case
5 does not appear to change with clanging # of varaints (has a slope of zero). We can
also see that cases 3 and 6 have negative slopes, and so accuracy decreases with a greater
# of varaints. This is likely due to the fact that as the # of varaints increases with
the same P (V AR|HCM), the number of false positives will increase, as the number of
individuals who have a pathogenic variant will increase while holding the number of in-
dividuals with both a variant and disease constant. Case 6 likely has the greatest slope
because it is not checked by a secondary echocardiogram test. Case 5 likely has almost no
slope because its secondary echocardiogram test is so specific, and will filter out nearly
all of the false positives the genetic test does not. Additionally, the curves appear to shift
upward for a larger P (V AR|HCM) in every case.

Figure 37 displays how accuracy changes for a changing P (V AR|HCM) with four con-
stant values of # of variants. It appears in all cases, the slopes are positive: that with
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(a) Case 2
σ : {0.002, 0.003, 0.003, 0.003, 0.003}

(b) Case 3
σ :{1e-4, 2e-4, 2e-4, 3e-4, 3e-4}

(c) Case 4
σ :{3e-4, 3e-4, 3e-4, 3e-4, 3e-4}

(d) Case 5
σ :{2e-4, 2e-4, 3e-4, 3e-4, 3e-4}

(e) Case 6
σ:{1e-4, 2e-4, 3e-4, 3e-4, 5e-4 }

Figure 35: Heatmaps of the Accuracy for each officer case. Standard deviation summary
given as σ : {min, 25th quantile, median, 75th quantile, maximum}

a greater P (V AR|HCM), the tests will be more accurate. With changing the constant
# of variants, the curves appear to shift downward for an increasing # of variants.
This shift is more pronounced in Case 6, less pronounced in Case 3, and absent in Case
5, likely due to the selectivity of the echocardiogram tests used.

In Figures 36 and 37, the grey dotted line represents the average accuracy of Case 4.
Cases 3 and 5 appear to have higher accuracy than Case 4 for all P (V AR|HCM) and
# of variants combinations. Case 6 surpasses Case 4 only for low # of variants and
high P (V AR|HCM) combinations.

Accuracy of enlisted and officer populations was found to be similar. Graphs for the
enlisted simulations can be found in Appendix B.

It is important to note that accuracy, as a measure to find the overall best screening
method, is an incomplete measure. In combining both how well the test detects HCM
and how well the test does not overclassify HCM, we lose the ability to distinguish what
exactly is happening to each model: whether the model overclassifes too many individuals
as diseased or does not classify enough. Additionally, it can be seen that the accuracies
of these measurements are all quite high. This is because, in part, HCM is a disease that
occurs in 1 in 500 individuals in the population. If a test simply never detected HCM
for anyone, its accuracy would be above 0.99. Therefore, small changes in accuracy are
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(a) Case 3 (b) Case 5 (c) Case 6

Figure 36: Accuracy, where the # of variants values were changed for three different
P (V AR|HCM) constants. Notice the negative slope for Cases 3 and 6, with nearly flat
lines for Case 5. The grey line indicates the average Accuracy of Case 4.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 37: Accuracy, where the P (V AR|HCM) values were changed for four different
different # of variants constants. Notice the positive slope for all cases, and how the
curves shift up for a larger P (V AR|HCM). The grey line indicates the average Accuracy
of Case 4.

more important, and it is important to distinguish why each of these test possess the ac-
curacy measures they do. This will be done in the forthcoming analysis of other measures.
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9.1.2 Sensitivity

The sensitivity measures how well a test is able to identify individuals who are truly posi-
tive, or in this case, have HCM. For this simulation, it is defined according to Equation 10.

Sensitivity =
# of people discharged and diseased

# of people diseased
(10)

A larger sensitivity indicates that more individuals who were diseased were identified
as such. Figure 38 displays heatmaps of the average sensitivity over the 1000 officer
simulations for each case in which screening occurred for every P (V AR|HCM) and
# of varaints combination.

(a) Case 2
σ : {2.05, 2.21, 2.24, 2.27, 2.36}

(b) Case 3
σ : {2.70, 3.26, 3.74, 4.13, 4.49}

(c) Case 4
σ : {3.41, 3.54, 3.60, 3.65, 3.77}

(d) Case 5
σ : {3.78, 4.16, 4.40, 4.63, 5.02}

(e) Case 6
σ : {1.76, 2.60, 3.25, 3.71, 4.19}

Figure 38: Heatmaps of the sensitivity for each officer case. Standard deviation summary
given as σ : {min, 25th quantile, median, 75th quantile, maximum}

We first explore Figure 38. From initial analysis of the heatmaps, it can be seen that for
cases 2 and 4, little to no variation exists in the sensitivity for changing P (V AR|HCM)
or # of variants. This is expected, as Cases 2 and 4 do not include any genetic screening,
and so are not affected by the variance in genetic values. Case 2 appears to have a con-
sistent value of approximatley 0.85, and Case 4 appears to have a constant approximate
value of 0.61. However, for cases 3, 5 and 6, the sensitivity appears to vary for different
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values of P (V AR|HCM) and # of variants.

In Figure 39, the average sensitivity for each genetic case (Case 3, 5 and 6) is plotted
against a changing number of variants for three different constant P (V AR|HCM) values
of 0.5, 0.7 and 0.9. These three different values were chosen because they represent a
range of the entire P (V AR|HCM) values used in this simulation (from 0.5 to 0.9). For
all three cases, the slope of all lines appear to be zero. However, the y-intercepts of the
lines appear to differ. For a greater P (V AR|HCM), the y-intercept also increase. For
example, in Case 3, a P (V AR|HCM) = 0.5 yields a consistent sensitivity value for all
# of variants of approximately 0.4. However, when P (V AR|HCM) = 0.5, Case 3 has a
consistent sensitivity value for all # of variants of approximately 0.75. This increase in
y-intercept and constant 0 slope is noted for all cases. Additionally, the y-intercepts from
case to case for the same P (V AR|HCM) constant value appear to differ as well. Case 5
appears to have the lowest sensitivity values, while Case 6 appears to have the highest.
This is likely due to the fact that Case 6 is not “checked” by a follow-up echocardio-
gram. A follow-up echocardiogram will have a certain false negative rate, and thus will
sometimes classify individuals who are actually diseased as “not diseased.” This causes
the sensitivity to decrease. Case 3 decreases less than Case 5 most likely because its
echocardiogram is more sensitive to HCM than the echocardiogram used in Case 5 is.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 39: Sensitivity, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slope of each line is approximately zero,
with the y-intercepts of the lines increasing as the constant value for P (V AR|HCM)
increases. Also note how Case 6 has the highest absolute values for sensitivity for any
given P (V AR|HCM), and Case 5 has the lowest. The lower grey line at approximately
0.6 indicates the average sensitivity of Case 4, and the upper grey line at a value of
approximately 0.85 indicates the average sensitivity for Case 2.

In Figure 40, the average sensitivity for each genetic case is plotted against a changing
P (V AR|HCM) for four different constant # of variants values of 100, 200, 300, and
400. These three different values were chosen because they represent a range of the entire
# of variants values used in this simulation (from 100 to 400). For all three cases, each
constant value of # of variants appeared to give the same exact line for each case. For
each case, the slope of the lines appeared to be positive and constant. However, the slope
of the lines for Case 6 appear to be the greatest, followed by Case 3 and then Case 5.
The y-intercepts for Case 6 also appear to be the greatest, followed by Case 3 and then
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Case 5. The reason for this difference between cases is likely due to the fact that cases
3 and 5 are checked by echocardiograms as mentioned above. We see, overall, that the
sensitivity increases with increasing P (V AR|HCM).

(a) Case 3 (b) Case 5 (c) Case 6

Figure 40: Sensitivity, where the P (V AR|HCM) values were changed for four different
# of variants constants. Lines did not change whatsoever for different # of variants
constants. Notice the positive slope for all three cases. Note how the slope and y-intercept
increases from Case 5 to 3 to 6. The lower grey line at approximately 0.6 indicates the
average sensitivity of Case 4, and the upper grey line at a value of approximately 0.85
indicates the average sensitivity for Case 2.

Also of note is when certain values for the sensitivity for the genetic cases surpass the
echocardiogram cases (approximately 0.85 for Case 2 and 0.61 for Case 4. The average
sensitivities for these two cases are plotted as dotted grey lines in Figures 39 and 40). Case
3 appears to surpass the Case 4 value at approximately when a P (V AR|HCM) = 0.7 or
greater is given. Case 6 appears to surpass the Case 4 value with a P (V AR|HCM) = 0.6,
and appears to surpass the sensitivity of Case 2 with a P (V AR|HCM) = 0.85. Cases
3 and 5 do not surpass the sensitivities of their respective echocardiogram tests that are
used in the cases to “check” the genetic test. This is because, with the genetic test, a
certain number of diseased individuals do not have a variant, and so will not be identified
by the genetic test. When the echocardiogram is used to “check” the genetic test, the
sensitivity will decrease further.

Additionally, the sensitivity analysis was carried out on the enlisted simulations. However,
the enlisted simulations returned approximately the same values as the officer simulations
for a given P (V AR|HCM) and # of varaints combination. Unlike for absolute measures
of TP, FN, FP, and TN, the sensitivity is a relative measure, and so does not increase with
an increased population. Graphs illustrating the sensitivity for the enlisted simulation
can be found in Appendix A.2.
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9.1.3 Specificity and False Positive Rate

Specificity measures how well a test can distinguish if people do not have a disease. It is
defined in this simulation as:

Specificity =
# of people retained and NOT diseased

# of people NOT diseased
(11)

False positive rate (FPR) measures how often a test calls an individual that is not diseased
as diseased. It is defined in this simulation as:

FPR =
# of people discharged and NOT diseased

# of people NOT diseased
(12)

Additionally, FPR and Specificity are related to each other by:

FPR = 1− Specificity (13)

Because of the relationship described in Equation 13, as specificity increases, FPR will
decrease. Thus, a model with the highest specificity will also have the lowest FPR. We
will not report FPR in this report, and instead assume the reader understands that with a
higher specificity, FPR will be less. Also of note is that these, like sensitivity, are relative
and not absolute terms. Thus, the absolute number of false positives does not guarantee
a specific specificity without knowledge of the population size and number of individuals
not diseased.

Figure 41 displays heatmaps of the average value of the specificity for all officer cases
over the 1000 simulations for every P (V AR|HCM) and # of variants combination.
Exploring this figure, we see that Case 2, Case 4 and Case 5 do not appear to vary for
any values of P (V AR|HCM) or # of variants. This makes sense for the non-genetic
cases 2 and 4, since they are not expected to vary for genetic parameters. However, Case
5 involves a genetic test, and would be expected to vary for changing genetic parameters.
A likely reason we see no variation for Case 5 is the fact that the genetic test is followed
up by an echocardiogram at maximum specificity, and for that reason, very few, if any,
false positives will result after the echocardiogram test. This very specific sequence of
tests and very through “check” on the genetic test likely allows Case 5 to have a very
high specificity that does not vary much with changing genetic values. Also noted from
the heatmaps is the much lower specificity for Case 2 (0.851) than for any of the other
cases (0.996 and higher). This is likely due to the large false positive rate of the Case 2
echocardiogram classifying many individuals “diseased” that are actually not diseased.

Figure 42 displays how the specificity changes with a changing # of variants while hold-
ing P (V AR|HCM) constant. Just as for sensitivity, we display here this change for three
different constant values of P (V AR|HCM) of 0.5, 0.7 and 0.9. Through Figure 42, it can
be seen that the specificity decreases with an increased # of variants for cases 3 and 6.
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(a) Case 2
σ : {0.003, 0.003, 0.003, 0.003, 0.003}

(b) Case 3
σ: {4e-6, 7e-5, 8e-5, 1e-4, 2e-4}

(c) Case 4
σ: {2e-4, 2e-4, 2e-4, 2e-4, 3e-4}

(d) Case 5
σ: {0, 5e-6, 7e-6, 8e-6, 2e-5}

(e) Case 6
σ: {1e-5, 2e-4, 2e-4, 3e-4, 5e-4}

Figure 41: Heatmaps of the specificity each Officer case. Case 2 has a much larger
Specificity value than any of the other cases. Standard deviation summary given as
σ : {min, 25th quantile, median, 75th quantile, maximum}

This is likely due to the fact that as the # of variants are increased, the number of in-
dividuals that would be classified by a genetic test as “diseased” also increases, however,
the actual number of individuals that have a variant and have disease remain the same
for the same P (V AR|HCM). Because of this, a genetic test for a larger # of variants
and the same P (V AR|HCM) will call more individuals as diseased when the same num-
ber of individuals are actually diseased, increasing the number of false positives, and
thus decreasing the specificity. When a different P (V AR|HCM) constant value is used,
the slopes of the specificity curves appear to remain the same, however the y-intercepts
appear to rise for increasing P (V AR|HCM). This is likely because as P (V AR|HCM)
increases, more individuals that have a variant will have disease, decreasing the number
of false positives for a genetic test. Also noted in this figure is the much larger slope for
Case 6 than for Case 3. This is likely due to the echocardiogram follow-up in Case 3
causing the genetic effects to decrease. For Case 5, the effects of the genetic parameters
are virtually zero with such a selective echocardiogram (slope of Case 5 is zero).

Figure 43 displays the specificity variation with changing P (V AR|HCM) given four con-
stant # of variant values of 100, 200, 300 and 400. From Figure 43, it can be seen that
cases 3 and 6 both increase in specificity with an increase in P (V AR|HCM). Addition-
ally, the y-intercepts of cases 3 and 6 increase with increasing P (V AR|HCM). The same
pattern exists where Case 6 has a higher slope and more variation in slope intercepts
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than Case 3, and Case 5 sees no variation for change in P (V AR|HCM).

It is important to note, however, that although Case 6 seems to vary more with P (V AR|HCM)
and # of variants than cases 5 and 3, it does not mean that Case 6 has a higher speci-
ficity than cases 5 and 3. Case 5 has consistently a specificity of approximately 1, which
is the ideal value for specificity. Case 3 has consistently higher values of specificity than
Case 6. These results are due to the selective nature of the “checks” on genetic screening
that the additional echocardiograms allow for cases 3 and 5. Comparing cases 3, 5 and
6 to cases 2 and 4, it can be immediately seen from the heatmaps that cases 3, 5 and 6
always have significantly higher specificites than Case 2. Cases 3 and 5 also have consis-
tently higher values of specificity than Case 4, which is displayed as the grey dotted line
on Figures 42 and 43. Case 6, however, only surpasses Case 4 in specificity for certain
lower values of # of variants and higher values of P (V AR|HCM).

(a) Case 3 (b) Case 5 (c) Case 6

Figure 42: Specificity, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the most
negative, and the slopes of the lines for Case 3 have smaller magnitudes, while Case 5
has flat lines. Increasing P (V AR|HCM) shifts the curves up. Dotted grey line is the
average value of specificity for Case 4.

It is also important to note why such small changes in specificity (from 1.000 to 0.998)
are noted as important. Specificity gives a the fraction of correctly classified individuals
relative to the fraction of non-diseased individuals in the population. Thus, a test with
a 90% specificity rate would misclassify 1,000 individuals if the non-diseased population
is 10,000. In the case of HCM in officers or enlisted in this simulation, the healthy non-
diseased population of individuals is well over 10,000 individuals. Because of this, a small
change in specificity can affect tens, or even hundreds of individuals. It would be un-
acceptable for a diagnostic test to misclassify thousands of individuals as diseased when
they were not diseased, and so looking for trends between a specificity of 0.997 and 0.999
is important because the changes will affect many individuals.

In Appendix B.3, results for the average Specificity among the 1000 enlisted simulations
are displayed. These values exhibit not only the same trends as the officer simulations,
but have approximately the same values as the officer simulations due to the relative
nature of the measure.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure 43: Specificity, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Cases 3 and 6 have positive slopes, with Case 6 having a greater
slope and more variation in intercepts for different values of # of variants. Case 5 has
flat lines at approximately 1. The dotted grey line represents the average value for the
specificity of Case 4.
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9.1.4 False Discovery Rate

Sensitivity and specificity both rely on values of how well a screening test performs with
regard to all of the individuals who are diseased or all of the individuals who are not
diseased. However, the False Discovery Rate (FDR) looks to assess how well a screening
test performs in relation to the population that it classifies as diseased. The False Dis-
covery Rate is defined for this situation as:

FDR =
# of individuals discharged and NOT diseased

# of individuals discharged
(14)

The false discovery rate is also 1−Posivie Predictive V alue (PPV ), which is defined as:

PPV =
# of individuals discharged and diseased

# of individuals discharged
(15)

We will report in this analysis only the FDR, however the PPV can be determined from
the reported FDR. The lower the FDR, the greater the chance that an individual that is
reported as “diseased” by the screening test will actually be diseased.

The average FDR for each of the 1000 officer simulations for each P (V AR|HCM) and
# of variants combination is reported in Figure 44. From this figure, we can see the
pattern that has occurred previously: cases 2 and 4 do not vary with changing genetic
parameters, whereas cases 3, 5 and 6 appear to vary. Case 2 also appears to have a much
higher FDR value than the other cases (approximately 0.99).

Figure 45 displays how FDR varies with # of varaints with constant values of P (V AR|HCM)
of 0.5, 0.7 and 0.9. From these figures, it can be seen that both cases 3 and 6 appear
to increase in FDR with an increasing # of varaints. However, Case 6 appears to have
a greater overall slope than Case 3. Additionally, unlike sensitivity and specificity, the
increase in FDR does not necessarily look to be linear, especially for Case 6. Instead,
it appears to follow a more logistical function pattern, with a decreasing slope as the
# of variants increase. Case 5 appears to increase only marginally as the # of variants
increases. For a greater P (V AR|HCM), the slopes for cases 3 and 6 appear to remain
the same, with the curves shifted up.

In Figure 46, the change in FDR with changing P (V AR|HCM) is plotted. In these
graphs, for cases 3 and 6, the slopes appear to be negative: with increasing P (V AR|HCM)
and constant # of variants, FDR decreases. This is likely due to the fact that if more
individuals with variants have HCM, there will be less false positives in a genetic test.
Case 6 appears to have the most negative slope, as well as the greatest y-intercepts, which
Case 3 having smaller slopes and y-intercepts. Case 5 appears to have a marginal, if no
slope likely due to the large corrective effect of the specific echocardiogram.

Also displayed in Figures 45 and 46 are two grey dotted lines. The lower grey lines repre-
sents the average FDR for all P (V AR|HCM) and # of variants combinations for Case
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(a) Case 2
σ: {0.002, 0.002, 0.002, 0.002, 0.002}

(b) Case 3
σ: {0.003, 0.005, 0.006, 0.008, 0.1}

(c) Case 4
σ: {0.08, 0.08, 0.08, 0.08, 0.09 }

(d) Case 5
σ: {0, 0.006, 0.009, 0.012, 0.026}

(e) Case 6
σ: {0.009, 0.067, 0.077, 0.083, 0.098}

Figure 44: Heatmaps of the average FDR for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

4. The upper grey dotted lines represent the average FDR for Case 2. It can be seen
that for all values displayed by the genetic tests in the figures, never does a genetic test
surpass the FDR of Case 2. Additionally, Cases 3 and 5 never surpasses the FDR for
Case 4. Case 6, for some large # of variants values and small P (V AR|HCM) values,
surpasses the FDR for Case 4. Cases 3 and 5 likely have low FDRs due to the multi-step
screening process that they must undergo. Case 6 does not have that multi-step screen-
ing process. It is important to note, however, that overall, for any P (V AR|HCM) and
# of variants combinations tested, cases 3 and 5 perform better with regard to FDR
than the pure echocardiogram cases 2 and 4.

In Figure S17, values for the average FDR among the 1000 enlisted simulations are
displayed for each P (V AR|HCM) and # of varaints combination. These values exhibit
not only the same trends as the officer simulations, but have approximately the same
values as the officer simulations due to the relative nature of the measure.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure 45: FDR, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the most
positive, and the slopes of the lines for Case 3 have smaller magnitudes, while Case 5 has
nearly flat lines. Increasing P (V AR|HCM) shifts the curves up. Also note the somewhat
logistical behavior of the Case 6 line. Lower Dotted grey line is the average value of FDR
for Case 4, upper dotted grey line is the average value of FDR for Case 2.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 46: FDR, where the P (V AR|HCM) was changed for four different constant values
of # of variants. Cases 3 and 6 have negative slopes, with Case 6 having a greater slope
and more variation in intercepts for different values of # of variants. Case 5 has flat
lines at approximately 0. The lower dotted grey line represents the average value for the
FDR of Case 4, the upper dotted grey line represents the average value for the FDR of
Case 2.
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9.1.5 False Omission Rate

Just as false discovery rate measures the rate that individuals are falsely classified when
discharged, false omission rate (FOR) measures the rate that individuals are falsely clas-
sified when retained. It is defined as:

FOR =
# of individuals diseased and retained

# of individuals retained
(16)

Negative predictive value is an indication of how likely, if a test is negative, that the
individual classified as “not diseased” is actually not diseased. It is defined as:

NPV =
# of individuals NOT diseaed and retained

# of individuals retaiend
(17)

Just as PPV is 1− FDR, NPV is also defined as:

NPV = 1− FOR (18)

Due to the above relationship, we will not explicitly define NPV, but it can be found
through the FOR, which we will explicitly analyze. A large FOR corresponds to a small
NPV, and vice versa.

In Figure 47, displayed is the average false omission rate among the 1000 officer simu-
lations for every combination of P (V AR|HCM) and # of variants. From this figure,
we can discern that cases 2 and 4 have constant FORs just as every other measure has
been constant. Cases 3, 5 and 6 appear to vary in FOR. for different P (V AR|HCM)
and # of variants combinations.

Figure 48 displays how FOR changes with increasing # of varaints for three different
constant values of P (V AR|HCM) of 0.5, 0.7 and 0.9. For cases 3, 5, and 6, FOR does
not appear to vary with the # of varaints, and all cases appear to have a slope of zero.
Case 5 appears to consistently have the highest FOR, followed by Case 3, and then Case
6. This is likely due to the fact that cases 3 and 5 have an echocardiogram “check” that
may increase the number of false negatives. Additionally, FOR seems to decrease for an
increased value of P (V AR|HCM), as the slopes remain the same but the y-intercepts
change.

Figure 49 displays how FOR changes with increasing P (V AR|HCM) for four constant
values of # of varaints of 100, 200, 300 and 400. A negative slope can be seen in
all figures: a decrease in FOR with increasing P (V AR|HCM), likely due to the fact
that less individuals with HCM are not picked up by genetic screening with an increased
P (V AR|HCM) because more individuals with HCM have a pathogenic variant. Case 6
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(a) Case 2
σ: {1e-4, 2e-4, 2e-4, 2e-4, 2e-4}

(b) Case 3
σ: {2e-4, 2e-4, 2e-4, 2e-4, 3e-4}

(c) Case 4
σ: {2e-4, 2e-4, 2e-4, 2e-4, 2e-4}

(d) Case 5
σ: {2e-4, 2e-4, 3e-4, 3e-4, 3e-4}

(e) Case 6
σ: {1e-4, 2e-4, 2e-4, 2e-4, 3e-4}

Figure 47: Heatmaps of the average FOR for each Officer case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 48: FOR, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines are approximately zero.
Increasing P (V AR|HCM) shifts the curves down. Lower dotted grey line is the average
value of FOR for Case 2, upper dotted grey line is the average value of FOR for Case 4.

appears to have the greatest slope and y-intercept, followed by Case 3 and then Case 5
(likely due to the more selective echocardiogram follow-up). Additionally, the line does
not appear to change at all with different values of # of varaints, indicating the FOR
is independent of the # of varaints.
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The two grey dotted lines on Figures 48 and 49 represent the FORs of Case 4 (upper line)
and Case 2 (lower line). Case 2 has a lower FOR likely because its echocardiogram is
less specific and more sensitive than the one used in Case 4. Cases 5 and 3 never achieve
values of FOR below the average values of their respective echocardiograms (Case 2 for
Case 3 and Case 4 for Case 5). However, Case 3 appears to achieve an FOR below Case
4 above P (V AR|HCM) = 0.7. Case 6 appears to achieve an FOR below Case 4 above
P (V AR|HCM) = 0.6 and below Case 2 above P (V AR|HCM) = 0.8.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 49: FOR, where the P (V AR|HCM) was changed for four different constant values
of # of variants. Cases 3, 5 and 6 all have negatives slopes, with the largest magnitude
of slope of Case 6, followed by cases 3 and then 5. Notice how FOR does not change with
changing values of # of variants. Lower dotted grey line is the average value of FOR
for Case 2, upper dotted grey line is the average value of FOR for Case 4.
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9.2 Performance of Cases: Preventing Death

Ultimately, the goal of the screening is not to look for individuals with HCM, but rather
to prevent death due to sudden cardiac death (SCD). We look at both the total number
of deaths per each case and the percent of individuals who are discharged that would
have died had they been in the military.

It is important to note that when we say “prevent” death, we hope to both avoid the cost
of an individual dying in the military due to SCD as well as allow the individual to pursue
the avenue to proper treatment of their HCM to prevent SCD in the future. The military
may be concerned about the cost associated with an individual dying in the military,
however the individual discharged due to HCM that lives because of knowledge of their
diagnosis due to the screening implemented by the military is something to consider as a
“benefit” as well.

9.2.1 Number of Deaths

The average total number of deaths over the 1000 officer simulations per each case per each
P (V AR|HCM) and # of variants combinations are illustrated as heatmaps in Figure
50. It is important to note that Case 1 represents the average number of individuals
that die from HCM in the military given no intervention whatsoever. The number of
individuals saved from a screening case may be calculated by:

deaths prevented = individuals die in Case 1− individuals die in screening Case X
(19)

In this section, we will not analyze the number of deaths prevented, but rather will view
the best performing screening test as the test that has the least number of deaths in the
military.

Figure 51 displays how the # of deaths changes with changing # of variants and con-
stant P (V AR|HCM) values of 0.5, 0.7 and 0.9 for cases 3, 5 and 6. It can be seen for all
three of these cases that the number of deaths does not change significantly for changing
# of variants, but the y-intercept of the lines increase for a smaller P (V AR|HCM).
Case 5 appears to have the highest # of deaths for each value of P (V AR|HCM), and
Case 6 appears to have the lowest # of deaths for each value of P (V AR|HCM), likely
due to the echocardiogram follow-up removing some individuals with HCM as false neg-
atives.

In Figure 52, the number of deaths is seen to decrease for an increasing # of variants,
indicating that as the genetic tests are able to identify more individuals with HCM, the
number of people who die from the condition decrease. The greatest slope was seen for
Case 6, followed by cases 3 then 5, and the constant # of variants value used did not
change the y-intercept or slope of the line.

Also identified in these figures are the average number of deaths for cases 2, 4 and 1. Case
2 is displayed as the lower dotted grey line. Cases 3 and 5 never have values below Case
2, and Case 6 only is below Case 2 for high P (V AR|HCM) values. The average number
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of deaths for Case 4 is sown as the upper grey line in Figures 51 and 52. Case 5 never
goes below this line, however Case 3 has less deaths than Case 5 at a P (V AR|HCM) of
approx. 0.7, and Case 6 has less deaths than Case 5 at a P (V AR|HCM) of approx. 0.6.
The average deaths for Case 1 is shown as the red dotted line at the top of the figures.
Screening tests better prevent SCD the further they are below this red line.

(a) Case 1
σ: {1.6, 1.7, 1.7, 1.7, 1.8}

(b) Case 2
σ: {0.59, 0.63, 0.65, 0.66, 0.70 }

(c) Case 3
σ: {0.76, 0.95, 1.1, 1.2, 1.3}

(d) Case 4
σ: {0.99, 1.0, 1.1, 1.1, 1.1}

(e) Case 5
σ: {1.1, 1.2, 1.3, 1.4, 1.5}

(f) Case 6
σ: {0.5, 0.8, 0.9, 1.1, 1.2}

Figure 50: Heatmaps of the average number of deaths for each Officer case. Standard
deviation summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure 51: deaths, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice how the cases do not appear to vary with # of variants
but the curves shift down with increasing P (V AR|HCM). Upper dotted red line is the
average deaths from Case 1, the middle grey line is the average deaths from Case 4, and
the lower dotted grey line is the average deaths from Case 2.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 52: deaths, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Cases 3, 5 and 6 have negative slopes, with Case 6 having a
greater slope. Upper dotted red line is the average deaths from Case 1, the middle grey
line is the average deaths from Case 4, and the lower dotted grey line is the average
deaths from Case 2.
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We also include the results from the enlisted simulations. Displayed in Figure 53, the
heatmaps for the average death value for each P (V AR|HCM) and # of variants com-
binations in the 1000 enlisted simulations are displayed.

(a) Case 1
σ: {3.8, 4.0, 4.1, 4.2, 4.3}

(b) Case 2
σ: {1.5, 1.6, 1.6, 1.6, 1.7}

(c) Case 3
σ: {1.9, 2.3, 2.6, 2.9, 3.2}

(d) Case 4
σ: {2.4, 2.5, 2.6, 2.6, 2.8}

(e) Case 5
σ: {2.7, 2.9, 3.2, 3.3, 3.6}

(f) Case 6
σ: {1.2, 1.9, 2.3, 2.7, 3.0}

Figure 53: Heatmaps of the average deaths for each enlisted case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

Due to the larger size of the enlisted population, the deaths would be expected to be
greater. However, enlisted individuals only spend an average of 7 years in the military
compared to 11 for officers, and so an enlisted individual who has HCM would have a
decreased chance of dying of SCD in the military because the chance of SCD due to HCM
is 0.0081 per year. Additional enlisted graphs can be found in Appendix B.

The same overall trends exist for the enlisted cases as for the officer cases. However,
unlike in previous situations, where the enlisted absolute values were more of a direct
reflection of the ratio of the enlisted population to the officer population, the absolute
values in these cases are less than that ratio would predict due to the less number of years
the enlisted spend in the military on average.
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9.2.2 Fraction of Deaths Prevented For Discharged Individuals

We also explore the proportion of individuals who are discharged for each case that would
have died of sudden cardiac death had they been in the military. The discharge deathrate
is equal to:

Discharge Deathrate (DDrate) =
# of deaths prevented

# of individuals discharged
(20)

Where the # of deaths prevented is equal to the number of individuals who would have
died during military service had they not been discharged as described in Equation 19.

In Figure 54, displayed are the heatmaps for the average value for each of the P (V AR|HCM)
and # of variant combinations among the 1000 officer simulations. It can be seen here
that cases 2, 4 and 5 do not appear to vary, similarly to other measures listed before.

(a) Case 2
σ: {5e-4, 6e-4, 6e-4, 6e-4, 7e-4}

(b) Case 3
σ: {0.04, 0.06, 0.06, 0.06, 0.07}

(c) Case 4
σ: {0.03, 0.03, 0.04, 0.04, 0.04}

(d) Case 5
σ: {0.07, 0.07, 0.08, 0.09, 0.1}

(e) Case 6
σ: {0.01, 0.03, 0.04, 0.04, 0.06}

Figure 54: Heatmaps of the average discharge deathrate for each Officer case. Standard
deviation summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

In Figure 55, the change in the discharge deathrate for the change in the # of variants
is shown. It can be seen that for cases 3 and 6, the slopes are negative. Additionally,
the curves appear to shift up for higher P (V AR|HCM) values. Case 5 does not appear
to change. These patterns are likely due to the fact that increasing the # of variants
decreases the specificity for cases 3 and 6, which causes more individuals without HCM
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to be discharged, correlating to a lower discharge deathrate.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 55: discharge deathrate, where the # of variants were changed for three different
constant values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the
most negative, and the slopes of the lines for Case 3 have smaller magnitudes, while Case
5 has nearly flat lines. Increasing P (V AR|HCM) shifts the curves up. Lower Dotted
grey line is the average value of DDrate for Case 2, upper dotted grey line is the average
value of DDrate for Case 4.

In Figure 56, the change in the discharge deathrate for the change in P (V AR|HCM) is
displayed. In these figures, the slopes for cases 3 and 6 are both positive. Additionally,
as the # of variants increases, the discharge deathrate curve shifts down for cases 3 and
5. The slope and curve shifts are more dramatic for Case 6 than Case 3, however. Case
5 appears to have a slope of zero and the line appears not to change for all cases.

(a) Case 3 (b) Case 5 (c) Case 6

Figure 56: discharge death rate, where the P (V AR|HCM) was changed for four different
constant values of # of variants. Cases 3 and 6 have positive slopes, with Case 6 having
a greater slope and more variation in intercepts for different values of # of variants.
Case 5 has flat lines. The lower dotted grey line represents the average value for the
DDrate of Case 2, the upper dotted grey line represents the average value for the DDrate
of Case 4.

The average discharge deathrate for cases 2 and 4 are displayed as the lower and upper
grey lines, respectively, on Figures 55 and 56. Cases 3 and 5 surpasses these two averages
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for all # of variants and P (V AR|HCM) combinations. Case 6, however, only surpasses
Case 4 for high P (V AR|HCM) and low # of variants combinations.
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10 Cost of Screening Tests

We determined through the results of this simulation which cases, and dependent on
which variables, would confer a monetary benefit or cost to the military if performed.
“cost” in this section only refers to the monetary cost associated with the screening tests
or with individuals dying from sudden cardiac death (SCD) due to HCM in the military.

With regard to cost, the enlisted and officer simulations may incur vastly different costs,
due to the differentials in their population sizes, cost of training, and years in service.
Additionally, combining the officer and enlisted cases may further change the cost anal-
ysis. We explore each option in depth in this section.

All costs provided in this report are in the United States Dollar value at March of 2018.

10.1 Cost of Doing Nothing

Analysis of the monetary cost of the screening test cases was performed by relating the
cost of a test to the cost of “doing nothing,” or the cost of Case 1. We did this by
determining the Net benefit of each screening test, which was:

Net benefit = Cost Case 1− Cost Case X (21)

Where X is a screening case (2-6). The cost of Case 1 is the status quo: the cost that
the military is incurring currently. The cost of each cases includes the cost of screening
and the cost associated with individuals that die because they are not picked up by the
screening. If the cost of case X is lower than the cost of Case 1, the military will save
money, and the Net benefit will be positive. If the cost of case X is more than the cost
of Case 1, the military will loose money and the Net benefit will be negative. Thus, we
are trying to determine if for any of the cases the Net benefit is positive, and under what
conditions the Net benefit may be maximized.

The cost of Case 1 would expected to stay relatively constant for each officer and en-
listed simulations. Figure 57 shows the enlisted and officer costs of doing nothing. It is
important to note that despite having similar costs for Case 1, the officer and enlisted
simulations did not arrive at the same costs or the same mechanisms for achieving the
costs. The reason for the officer and enlisted similarity in costs is due to the greater cost
of training an officer (around 15 times greater) than training an enlisted member, yet the
decreased population of officers compared to enlisted.
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(a) Officer Cost Case 1
σ : {2e6, 2e6, 2e6, 2e6, 2e6}

(b) Enlisted Cost Case 1
σ : {6e5, 6e5, 6e5, 6e5, 7e5}

Figure 57: Average cost of doing nothing (Case 1). Enlisted and officer simulations have
similar, but not equal costs. More enlisted members die, but the cost per death of enlisted
member is lower than the cost per death of an officer due to the decreased training costs.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

10.2 Cost of Officer Simulation

Here, we use the officer simulation to determine what would be the most effective case
from a cost perspective.

10.2.1 Net Benefit Case 3: Officer

We begin our genetic cost analysis with Case 3 for officers: a genetic test followed by a
high-accuracy echocardiogram. We first took the Net benefit of twelve different genetic
test (GT) costs: $10, $50, $100, $200, $300, $400, $500, $600, $700, $800, $900, and
$1000. We displayed the average Net benefit among the 1000 officer simulations for each
combination of P (V AR|HCM) and # of variants for each of the three different GT
costs where Net benefit is positive, displayed in Figure 58.

The military incurs no benefit whatsoever when the genetic test cost is $200 and above
for Case 3. However, as seen in Figure 58, a positive Net benefit is realized at a GT cost
of $100 for some values of P (V AR|HCM).

We also look to see how the Net benefit varies with different P (V AR|HCM) and # of variants
values. In Figure 59a, we see that the # of variants appears to have little effect on the
Net benefit of Case 3, but may cause the slope to be slighly negative where an increased
# of variants causes a decrease in Net benefit. However, from Figure 59b, we can see
that with an increased P (V AR|HCM), the Net benefit for Case 3 increases, crossing
zero and yielding a positive value for the $100 and cheaper genetic tests.
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(a) $10 Genetic Test
σ : {1e6, 1e6, 1e6, 1e6, 2e6}

(b) $50 Genetic Test
σ : {1e6, 1e6, 1e6, 1e6, 2e6}

(c) $100 Genetic Test
σ : {1e6, 1e6, 1e6, 1e6, 2e6}

Figure 58: Heatmaps of the average Net benefit for officer Case 3 where Net benefit is
realized. Standard deviation summary given as: σ: {min, 25th quantile, median, 75th
quantile, maximum}.

Finally, we attempt to determine the cost of the genetic test at which for a given
P (V AR|HCM) and # of variants the Net benefit equal zero, or the military will “break
even” in regards to the benefit of individuals saved and the cost of the test. A genetic test
cost below this value and at the same combination of # of variants and P (V AR|HCM)
will result in a positive Net benefit (military will make money from implementation),
and a genetic test cost above this value will result in a negative Net benefit (military
will lose money from implementation). We did this by plotting, for one combination
of P (V AR|HCM) and # of variants, the average Net benefit vs. the genome cost.
We then fitted a regression line to the points, and found the x-intercept of the line.
This x-intercept represents the genetic test cost for that particular P (V AR|HCM) and
# of variants combination that the military will “break even” at. An example of this
procedure is highlighted in Figure 60.

From the procedure outlined above, “Break-Even” genetic test costs were found for each
P (V AR|HCM) and # of variants combinations, displayed in Figure 61. From this
figure, it can be determined that at what point, when a genetic test is at a certain cost,
this case may be realistic to implement.
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(a) Vary # of variants (b) Vary P (V AR|HCM)

Figure 59: 59a displays how Net benefit of officer Case 3 differs with changing
# of variants. Notice how the slope appears to be zero, or slightly negative. The
$100 genetic test straddles the $0 Net benefit line. Figure 59b displays how Net benefit
changes with a change in P (V AR|HCM). Notice how the slopes are positive.

(a) Example 1 (b) Example 2

Figure 60: From these plots, where each line intersects zero (the dotted black line) is con-
sidered the “break even” cost. This was found for each P (V AR|HCM) and # of variants
combination.
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Figure 61: “Break-Even” genetic test costs for Officer Case 3. All costs are in USD value
at March of 2018.
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10.2.2 Net Benefit Case 5: Officer

We perform this analysis as we did with officer Case 3. Figure 62 displays the heatmaps for
the average Net benefit amount 1000 simulations for each P (V AR|HCM) and # of variants
combinations. This figure shows that Net benefit does not generally occur until a $50
genetic test cost is implemented.

Figures 63a and 63b display how the Net benefit of Case 5 changes with P (V AR|HCM)
and # of variants. The trends remain the same between cases 3 and 5: a slightly nega-
tive slope for changing # of varaints, and positive slope for changing P (V AR|HCM).
However, the magnitudes of the slopes are lower for Case 5 than Case 3. This can be
explained by the much more selective echocardiogram that Case 5 undergoes relative to
Case 3, which decreases its sensitivity and thus does not allow as many people to be
detected and saved from SCD relative to Case 3.

In Figure 64, the “break-even” values for officer Case 5 are displayed. Note that these
values follow the same trends, but are less than the values for Case 3.

(a) $10 Genetic Test
σ : {9e5, 1e6, 1e6, 1e6, 1e6}

(b) $50 Genetic Test
σ : {9e5, 1e6, 1e6, 1e6, 1e6}

(c) $100 Genetic Test
σ : {9e5, 1e6, 1e6, 1e6, 1e6}

Figure 62: Heatmaps of the average Net benefit for officer Case 5. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Vary # of variants (b) Vary P (V AR|HCM)

Figure 63: Net benefit graphs for officer Case 5, Notice how these trends follow the
trends in officer Case 3, with the slope slightly negative for Figure 63a and positive for
63b. However, the Net benefit appears to be less compared to Case 3.

Figure 64: “Break-Even” genetic test costs for Officer Case 5.
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10.2.3 Net Benefit Case 6: Officer

Heatmaps for officer Case 6 for the average Net benefit over 1000 simulations for each
P (V AR|HCM) and # of variants combination are shown in Figure 65. It can be seen
from these heatmaps that the Net benefit reaches a positive value for more of the $100
genetic test P (V AR|HCM) and # of variants combinations than Case 5 or Case 3.
This is likely due to the fact that there is no secondary “check” on the test, which costs
additional money and causes some individuals with HCM to be erroneously retained after
testing positive for a pathogenic variant.

From Figures 66a and 66b, it can be seen that the Net benefit does not appear to change
with an increased # of variants, and the Net benefit appears to increase with an in-
creased P (V AR|HCM). The reason why the Net benefit value does not change with
# of variants can be explained by the fact that no additional costs are incurred when
an individual tests positive for a genetic test, unlike in cases 3 and 5 which require
echocardiograms, and so more people testing positive for a genetic test when more vari-
ants are present will not affect the Net benefit of Case 6.

Figure 67 displays the “break-even” genetic test costs for Case 6. These appear to be
larger than for cases 3 and 5, indicating that a more expensive genetic test will yield
more benefit for Case 6 than cases 3 or 5.

(a) $10 Genetic Test
σ : {1e6, 1e6, 1e6, 2e6, 2e6}

(b) $50 Genetic Test
σ : {1e6, 1e6, 1e6, 2e6, 2e6}

(c) $100 Genetic Test
σ : {1e6, 1e6, 1e6, 2e6, 2e6}

Figure 65: Heatmaps of the average Net benefit for officer Case 6. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Vary # of variants (b) Vary P (V AR|HCM)

Figure 66: Change in Net benefit for officer Case 6 with varying # of variants (Figure
66a and varying P (V AR|HCM) (Figure 66b. Note how the slopes appear to be zerowith
varying # of variants, and positive for varying P (V AR|HCM). In this case the entire
$100 GT is above a Net benefit of 0.

Figure 67: “Break-Even” genetic test costs for Officer Case 6.
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10.2.4 Comparing Screening Costs: Officer Simulation

Now that the genetic tests (cases 3, 5 and 6) have been analyzed, we look to analyze
the non-genetic tests (cases 2 and 4) and compare the costs of these non-genetic tests to
the genetic tests. Figure 68 displays heatmaps for the average Net benefit over the 1000
simulations of the cost of Case 2 and Case 4 for each P (V AR|HCM) and # of variants
combination. Figure 69 shows the Net benefit of cases 2 and 4 in comparison to cases 3,
5 and 6 at a $100 genetic test. It can be seen that the Net benefit of cases 2 and 4 is
much lower than that of Case 3, 5 and 6 at a GT cost of $100. However, increasing the
$GT cost increases the cost of the genetic test cases. Overall, echocardiogram only tests
are much more costly than genetic tests.

(a) Officer Cost Case 2
σ : {1e6, 2e6, 2e6, 2e6, 2e6}

(b) Officer Cost Case 4
σ : {1e6, 2e6, 2e6, 2e6, 2e6}

Figure 68: Average Net benefit of Case 2 and Case 4 (officer simulation). Standard
deviation summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) vary # of Var. (b) Vary P (V AR|HCM)

Figure 69: Average Net benefit of cases 2, 3, 4, 5 and 6 on two graphs with varying
# of variants and P (V AR|HCM). It can be seen that cases 2 and 4 do not change
with either # of variants nor P (V AR|HCM), and that their Net benefit is much less
than any of the genetic tests at the particular genetic cost. This is due to the high cost
of the echocardiogram.
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10.3 Enlisted Simulation Cost Results

10.3.1 Enlisted Case 3

Just as analyzed in the officer Case 3, in Figure 70, three heatmaps for the cheapest GT
costs for enlisted Case 3 are displayed. From these heatmaps, it can be seen that the
enlisted Case 3 confers benefit at a much smaller GT cost than officer Case 3 did, which
looks to be below a $10 genetic test.

Figure 71a displays how the Net benefit changes with changing # of variants. The slopes
of the lines appear to be negative, indicating that benefit decreases as the # of variants
increases, likely due to the need for more echocardiograms. In Figure 71b, the Net bene-
fit appears to increase for a greater P (V AR|HCM), likely due to more individuals with
HCM being identified by the test.

In Figure 72, the “break-even” genetic test cost values for enlisted Case 3 are displayed.
Note how much smaller these values are than for the officer case. Additionally, note
how a few GT costs appear to be negative. The reason for this negative GT cost is be-
cause, when a large population of individuals who do not have HCM is required to have
echocardiogram screening (more likely to happen when P (V AR|HCM) is low and the
# of variants is high), the cost of the follow-up echocardiograms themselves will cause
a negative Net benefit, because so many follow-up echocardiograms are required. This is
why a negative GT cost is required to counterbalance this inequality A negative GT cost
indicates that not only the GT needs to be very low, but the echocardiogram test must
be lower in cost as well.

(a) $10 Genetic Test
σ : {4e5, 4e5, 5e5, 5e5, 6e5}

(b) $50 Genetic Test
σ : {4e5, 4e5, 5e5, 5e5, 6e5}

(c) $100 Genetic Test
σ : {4e5, 4e5, 5e5, 5e5, 6e5}

Figure 70: Heatmaps of the average Net benefit for enlisted Case 3. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Vary # of variants (b) Vary P (V AR|HCM)

Figure 71: Change in Net Benefit for enlisted Case 3 with either changing # of variants
or P (V AR|HCM). Note how the trends are the same as in the officer simulation:
decreasing benefit for increasing # of variants and increasing benefit for increasing
P (V AR|HCM), but absolute values are much smaller.

Figure 72: “Break-Even” genetic test costs for Enlisted Case 3.
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10.3.2 Enlisted Case 5

In Figure 73, three heatmaps for the cheapest GT costs for enlisted Case 5 are displayed.
From these heatmaps, it can be seen that the enlisted Case 5 confers benefit at a smaller
GT cost than enlisted Case 3 did.

Figure 74a displays how the Net benefit changes with changing # of variants. The slopes
of the lines appear to be negative, indicating that benefit decreases as the # of variants
increases, likely due to the need for more echocardiograms. In Figure 74b, the Net bene-
fit appears to increase for a greater P (V AR|HCM), likely due to more individuals with
HCM being identified by the test.

In Figure 75, the “break-even” genetic test cost values for enlisted Case 5 are displayed.
Note that these are smaller than enlisted Case 3.

(a) $10 Genetic Test
σ : {3e5, 4e5, 4e5, 4e5, 5e5}

(b) $50 Genetic Test
σ : {3e5, 4e5, 4e5, 4e5, 5e5}

(c) $100 Genetic Test
σ : {3e5, 4e5, 4e5, 4e5, 5e5}

Figure 73: Heatmaps of the average Net benefit for enlisted Case 5. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Vary # of variants (b) Vary P (V AR|HCM)

Figure 74: Change in Net Benefit for enlisted Case 5 with either changing # of variants
or P (V AR|HCM). In Figure 74a, note how the Net benefit decreases as # of varians
increases. In Figure 74b, note how the Net benefit increases for an increase in
P (V AR|HCM). Additionally, note that only the $GT cost is near positive Net ben-
efit.

Figure 75: “Break-Even” genetic test costs for Enlisted Case 5.
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10.3.3 Enlisted Case 6

In Figure 76, three heatmaps for the cheapest GT costs for enlisted Case 6 are displayed.
From these heatmaps, it can be seen that the enlisted Case 6 confers benefit at a smaller
GT cost than officer Case 6 did.

Figure 77a displays how the Net benefit changes with changing # of variants. The
slopes of the line appears to be zero, indicating that benefit remains the same as the
# of variants increases, likely due to the absence of follow-up echocardiograms. In Fig-
ure 77b, the Net benefit appears to increase for a greater P (V AR|HCM), likely due to
more individuals with HCM being identified by the test.

In Figure 78, the “break-even” genetic test cost values for enlisted Case 6 are displayed.
Note that these are smaller than officer cases 3, 5 and 6, but are larger than any other
enlisted case.

(a) $10 Genetic Test
σ : {4e5, 5e5, 5e5, 6e5, 6e5}

(b) $50 Genetic Test
σ : {4e5, 5e5, 5e5, 6e5, 6e5}

(c) $100 Genetic Test
σ : {4e5, 5e5, 5e5, 6e5, 6e5}

Figure 76: Heatmaps of the average Net benefit for enlisted Case 6. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.
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(a) Vary # of varaints (b) Vary P (V AR|HCM)

Figure 77: Change in Net Benefit for enlisted Case 6 with either changing # of variants
or P (V AR|HCM). Note how the Net benefit for enlisted Case 6 appears to remain
constant for changing # of variants, but increases with increasing P (V AR|HCM).

Figure 78: “Break-Even” genetic test costs for Enlisted Case 6.
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10.4 Combining Officer and Enlisted Simulations

(a) Case 3 (b) Case 5 (c) Case 6

Figure 79: Heatmaps of where the average value for “Break-even” cost of a genetic test
when Net benefit = 0 for a combined officer and enlisted simulation. Note that, in
general, these are much lower than from the officer simulation, and slightly higher than
the enlisted simulation.

From the previous analysis, it was illustrated that officer screening is much more cost-
effective than enlisted screening due to the larger cost of an officer death and the larger
time officers spend in the military than enlisted. For previous parameters, such as sen-
sitivity, specificity, FOR, and FDR, the officer and enlisted numbers remained nearly
identical, and for measures such as the number of deaths, officer and enlisted simulations
may simply be added to obtain the result. For Net benefit, officer and enlisted Net benefit
merely needs to be added in order to determine the combined Net benefit. We provide a
short analysis of how this addition affects the Net benefit.

Figure 80 displays the average Net benefit for the combined officer and enlisted simula-
tions for each value of P (V AR|HCM) and # of variants combination for a $10, $50
and $100 GT. The three genetic cases are shown. Notice how these Net benefits are much
lower than they are in the officer simulation, and a positive Net benefit does not occur
until around $10 per genetic test, whereas it occurred at around $100 per genetic test in
the officer simulation. The Net benefits, however, are larger than the enlisted simulation
Net benefits. The officer and enlisted simulations somewhat offset each other, however
because of the greater enlisted population than the officer population, the Net benefit of
the enlisted simulation does not rise as much as the Net benefit of the officer simulation
falls. We see the same pattern in Figure 79, which shows the “break-even” genetic test
cost for these combined simulations, which is well below $100 for all genetic tests.

We also see the same trends as previous: for a higher P (V AR|HCM), cases 3, 5 and 6
improve in Net benefit. For a lower # of variants value,cases 3 and 5 improve in Net
benefit, however the Net benefit of Case 6 remains constant. Because of this, maximizing
P (V AR|HCM) and minimizing # of variants would be important considerations before
utilizing a combined genetic test.

The military, then, must take into account the possibility that genetic screening on only
the officer population may be the only cost-effective option. Screening the combined
enlisted and officer populations may be cost-effective if the costs associated with genetic
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testing are approximatley $20-$30, and a high P (V AR|HCM) and low # of variants
value is obtained.

(a) Case 3: $10 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

(b) Case 3: $50 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

(c) Case 3: $100 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

(d) Case 5: $10 GT
σ : {1e6, 1e6, 1e6, 1e6, 1e6}

(e) Case 5: $50 GT
σ : {1e6, 1e6, 1e6, 1e6, 1e6}

(f) Case 5: $100 GT
σ : {1e6, 1e6, 1e6, 1e6, 1e6}

(g) Case 6: $10 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

(h) Case 6: $50 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

(i) Case 6: $100 GT
σ : {1e6, 1e6, 2e6, 2e6, 2e6}

Figure 80: Heatmaps of the average Net benefit of Cases 3, 5 and 6 for a combined officer
and enlisted simulation. Note that, in general, these Net benefits are much lower than the
Net benefits from the officer simulation, and slightly higher than the enlisted simulation.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.
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11 Variation in the Simulations

It is important to note that in the data analysis, every value used was an average of
the 1000 separate populations that were simulated. The reason that averages were used
in this simulation is because the military is more likely to be concerned about how the
simulation will affect costs and personnel in the long run rather than be concerned about
extrema. However, it should be noted that the values presented will not happen for every
population, and instead represent an average of values for many populations.

Standard deviations for heatmaps have been presented below the graphs. The standard
deviations given represent a range of the standard deviations of each heatmap (given as
minimum, 25th quantile, median, 75th quantile, maximum). This means that we took the
standard deviations of each of the 119 P (V AR|HCM) and # of variants combinations
as a set and displayed below the heatmaps the minimum, 25th quantile, median, 75th
quantile, maximum. The purpose of this is to give the reader an idea of how the data
varied and by how much the data varied.

We illustrate the how variation takes place in the simulation by displaying a density map
of the sensitivity of the officer simulation with a P (V AR|HCM) = 0.5 and # of variants =
130 in Figure 81. It can be seen that the simulation has variable sensitivities over the
1000 times it was run.

Figure 81: Variation amoung the 1000 officer simulations for sensitivity for a values
P (V AR|HCM) = 0.5 and # of varaints = 130. The means of the sensitivities of the
cases are displayed as dotted vertical lines. Notice how the sensitivities vary amoung
many values for each case, due to random differences in each simulation.



114

12 Assessing Psychological and Ideological Concerns

Through a Survey

We developed a survey to determine the attitudes military members have towards ge-
netic screening. The survey looks to serve as an indicator of the magnitude of resistance
to genetic screening and to determine what mechanisms could be performed to allow
military members to be more accepting of genetic screening. The survey was developed
using questions from two previous studies [45, 46], and additionally by developing new
questions. The survey was developed and reviewed with the help of Don Hadley, NHGRI;
Pauk Kruszka, NHGRI; Brad Johnson, USNA; and Melonie Teichert, USNA. The survey
Questions are provided in Appendix ??.

12.1 Implementation

The Survey was approved by the United States Naval Academy Human Research Pro-
tection Program (HRPP) on 20 April 2018 (Approval # USNA.2018.0030-IR-EM2-A).
The survey recruitment email was sent at 9AM on Monday, 23 April 2018. The survey
remained open for 48 hours and was closed on 25 April 2018. We provide the form and
recruitment email for reference in Appendix D.3.

The survey was distributed via email to all military members of the United States Naval
Academy including Midshipmen. 5205 individuals received the recruitment email, and
496 individuals completed the survey (9.5% response rate). All individuals who completed
the survey answered all 21 questions.

12.2 Results

12.2.1 Information About Respondents

Basic information about the survey respondents is displayed in Table 16. The dispropor-
tionate number of males to females is due to the greater number of males in the military
than females.

It is important to note that individuals responded to Question 2 with a number, and we
grouped the responses to Question 2 into four distinct categories: individuals who have
been in the military for 5 years or less, individuals with military service between 5 and
10 years, individuals with between 10 and 20 years of military service, and individuals
with over 20 years of military service. The percentage of individuals in each category is
displayed in Table 16.

Additionally, we display in Table 17 the information about individuals’ experience with
a medical waiver (Q4), genetic disease (Q5), and their knowledge of genetic testing (Q6).
In Table 17, percentages are displayed as the fraction of individuals’ response out of the
total number of respondents, and the 95% confidence interval of the results is displayed
below the percents. The confidence intervals are joint confidence intervals calculated
based on the multimodal distribution.
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Table 16: Information About Survey Respondents

Q1: Have you ever been in the military?

Yes No
% 99.0 1.0

Q2: Years of Military Service (include ROTC/service academy)

0-5 5-10 10-20 > 20
% 78.9 5.9 7.7 7.5

Q3: Do you have any military service outside of ROTC/Service Academy?

Yes No N/A
% 76.2 23.6 0.2

Q6: Gender

Male Female
% 64.5 35.5

Table 17: Experience of Survey Respondents with Military Medicine and Genetics

Q4: Have you been through the process of a medical waiver for any medical condition
you have had?

Yes No Prefer Not to Answer
% 38.7 59.7 1.6

95%CI (34 .3 , 43 .2 ) (55 .2 , 64 .1 ) (0 .0 , 6 .4 )

Q5: Have you or a family member ever had a medical condition thought to be ge-
netic/inherited?

Yes No Prefer Not to Answer
% 35.9 61.9 2.2

95%CI (31 .7 , 40 .4 ) (57 .7 , 66 .4 ) (0 .0 , 6 .7 )

Q7: How much have you read or heard about genetic testing for inherited disease?

Almost Nothing Relatively Little A Fair Amount A Lot
% 29.8 49.6 17.9 2.6

95%CI (25 .2 , 34 .5 ) (45 .0 , 54 .3 ) (13 .3 , 22 .6 ) (0 .0 , 7 .3 )

12.2.2 Opinions Regarding Genetic Testing

We begin our analysis of the opinions of genetic testing in the military by first analyz-
ing why individuals want to be genetically tested. In Table 18, we display the results
from Questions 8 and 9, which ask individuals to rate reasons they would want to be
genetically tested; each reason is rated as: “Does Not Apply,” “Not At All Important,”
“Somewhat Important” and “Very Important.” Question 9 then asks individuals to pick
only one reason as the “Most Important” reason.

From Table 18, it can be seen that the two most important reasons individuals want to
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be genetically tested is to both learn about their children’s/potential children’s risk or to
learn about their own risk. Most individuals regarded each reason given in the survey as
at least “somewhat important,” with “to be reassured” having the least amount of im-
portance among the entire population. From Table 18, we can conclude that individuals
want to be genetically tested for a multitude of medical reasons affecting both themselves
and others around them.

Table 18: Reasons Individuals Want to Be Genetically Tested (Q8 & Q9)
Q8 responses included in first four conditions. “Most Important” is response to Q9.
All values displayed in Percentages. 95% confidence intervals given below every value.
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To learn about my
children’s/potential
children’s risk

6.0 3.4 22.4 68.1 32.9
(2 .0 , 10 .2 ) (0 .0 , 7 .6 ) (18 .3 , 26 .5 ) (64 .1 , 72 .3 ) (28 .2 , 37 .6 )

To Learn About My
Risk

0.6 3.2 34.3 61.9 32.7
(0 .0 , 5 .1 ) (0 .0 , 7 .8 ) (30 .0 , 38 .8 ) (57 .7 , 66 .4 ) (28 .0 , 37 .4 )

To make important
medical decisions

1.6 7.7 32.5 58.3 19.8
(0 .0 , 6 .1 ) (3 .2 , 12 .2 ) (28 .0 , 37 .0 ) (53 .8 , 62 .8 ) (15 .1 , 24 .4 )

To know if I need to
get screening tests
more often

1.0 9.3 42.1 47.6 12.5
(0 .0 , 5 .7 ) (4 .6 , 13 .9 ) (37 .5 , 46 .8 ) (42 .9 , 52 .3 ) (7 .9 , 17 .2 )

To be reassured
1.2 27.2 45.6 26.0 2.2

(0 .0 , 6 .1 ) (22 .6 , 32 .1 ) (40 .9 , 50 .4 ) (21 .4 , 30 .9 ) (0 .0 , 6 .9 )

Table 19 displays the results from Questions 10 and 11, which ask respondents the im-
portance of reasons for NOT wanting to be genetically tested in the same manner as
Questions 8 and 9. The most important reason for not wanting to be tested was “worried
about losing my job” (39.9% rate most important) and the second most important reason
was “worried about losing my insurance” (19.6% rate as most important). Concern over
the effects the test results may have on an individuals’ family was high as well, with
16.7% of respondents listing it as their most important concern.

These results indicate that individuals in the military do have significant concern over the
effects genetic screening may have on their professional as well as personal lives. around
60% of individuals show concern that genetic screening may have some kind of profes-
sional detrimental outcome: either loss of job or insurance. If genetic screening were to
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be implemented in the military, these concerns would have to be addressed. Additionally,
it must be noted that the military population may be unique in this regard, since the US
military and federal government are the only institutions that can legally discriminate
based on the results of a genetic test in both employment and health insurance due to
the genetic information nondiscrimination act (GINA).

The concern for the effect the test results may have on an individual’s family (over 60%
of individuals list effects on family as at least somewhat important) and the concern that
individuals may not be able to handle the diagnosis emotionally (approximately 30% of
individuals list emotional concerns as somewhat important) highlights the fact that ge-
netic counseling services would likely be a requirement if the military were to implement
genetic screening. Genetic counseling services may allow individuals and families come
to terms with and understand the results of their genetic test.

The low numbers of individuals that rate “there is nothing that can be done to prevent
genetic disease” and “I do not trust modern medicine” as important (30% or less for
both) highlight that currently, individuals are aware and concerned about genetic condi-
tions, and that individuals in general trust the health system and medicine to give them
the care they require. This means that although there may be ideological barriers and
concerns about employment, individuals may be capable of understanding the result of a
genetic test if health professionals were able to adequately explain the diagnosis to them
and allow them to understand the results.

After we have identified reasons individuals both want to and do not want to receive ge-
netic testing, Questions 12-19 assess individuals’ opinions regarding genetic testing and
genetic testing in the military. Each of these questions had the possible responses of
“strongly agree,” “agree,” “neutral,” “disagree,” and “strongly disagree.” We combine
the “strongly agree” and “agree” responses as “Agree,” and the “strongly disagree” and
“disagree” responses as “Disagree” to simplify the analysis in this section. Table 20 dis-
plays the results of these questions in percentages with 95% confidence intervals.

From Table 20, we can initially see from Question 12 that individuals are generally curi-
ous about their disposition to genetic disease: almost 70% of respondents agreed they are
curious, and less than 10% disagreed. Additionally, Questions 13 and 14 display that, in
general, individuals are open to the idea of genetic testing. over 60% of individuals agreed
they would have their newborn child genetically screened to learn which diseases they
may develop, and over 90% of individuals said they would want to know if they had a
genetic condition that is treatable. These responses indicate that this population is open
to the idea of genetic testing and is open to the use of genetic testing as a mechanism to
detect and prevent disease.

The difference in the response between Question 14 and Question 15 is striking. From
Table 20, it can be seen that the percentage of individuals who want to know they have a
genetic condition that is treatable is over 90%, but for a condition that is NOT treatable,
only approximately 35% of individuals agreed they would like to know if they had it. This
highlights that individuals may only want to use genetic screening selectively and view
knowing about an untreatable disease as possibly an unnecessary and excessive burden.
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Table 19: Reasons Individuals DO NOT Want to Be Genetically Tested (Q10 & Q11)
Q10 responses included in first four conditions. “Most Important” is response to Q11.
All values displayed in Percentages. 95% confidence intervals given below every value.
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I am worried about
losing my job

3.6 23.6 27.8 45.0 39.9
(0 .0 , 8 .4 ) (19 .0 , 28 .4 ) (23 .2 , 32 .6 ) (40 .3 , 49 .8 ) (35 .1 , 44 .4 )

I am worried about
losing my insurance

5.4 32.2 32.1 30.2 19.6
(0 .8 , 10 .4 ) (27 .6 , 37 .2 ) (27 .4 , 37 .0 ) (25 .6 , 35 .2 ) (15 .1 , 24 .1 )

I am concerned
about the effect it
would have on my
family

3.0 32.9 44.0 20.2 16.7
(0 .0 , 7 .9 ) (28 .2 , 37 .7 ) (39 .3 , 48 .8 ) (15 .5 , 25 .0 ) (12 .3 , 21 .3 )

My chances of
having genetic
disease are small

9.7 48.6 35.3 6.5 9.3
(5 .2 , 14 .5 ) (44 .2 , 53 .4 ) (30 .8 , 40 .1 ) (2 .0 , 11 .3 ) (4 .8 , 13 .8 )

I am concerned that
I could not handle it
emotionally

5.0 65.1 24.8 5.0 6.5
(1 .0 , 9 .4 ) (61 .1 , 69 .5 ) (20 .8 , 29 .2 ) (1 .0 , 9 .4 ) (2 .0 , 11 .0 )

I believe that there
is nothing that can
be done to prevent
genetic disease

9.7 59.7 27.2 3.4 5.2
(5 .4 , 14 .2 ) (55 .4 , 64 .2 ) (23 .0 , 31 .8 ) (0 .0 , 8 .0 ) (0 .8 , 9 .8 )

I do not trust
modern medicine

11.9 74.6 11.5 2.0 2.8
(8 .3 , 15 .7 ) (71 .0 , 78 .4 ) (7 .9 , 15 .3 ) (0 .0 , 5 .8 ) (0 .0 , 7 .3 )

Question 16 asks individuals their opinion of genetic testing in the military to make em-
ployment decisions. Over 60% of respondents disagreed that this should be done, and
less than 15% agreed it should be done. This response highlights that individuals in the
military are generally not open to using genetic screening to make employment decisions.
This may be due to the fact that individuals in the military do not desire any additional
medical screening test that may merit disqualification. Additionally, the responses to
Question 17 indicate that individuals in the military are concerned about genetic results
not staying confidential, as around 60% of individuals expressed this concern. If the mili-
tary were to implement genetic testing, they would likely have to assure that they educate
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its members on how genetic testing is guaranteed to stay confidential and what safeguards
are in place to keep the genetic information safe. These two responses highlight that there
is significant concern, and would likely be significant opposition to, genetic screening in
the military and the military would likely have to respond with education regarding the
testing and handling of results.

Despite the fact that less than 15% of individuals agreed that genetic screening should
be implemented in the military, Question 18 gives a scenario in which an individual has
already undergone a genetic screening test and is identified as having a substantial sud-
den cardiac death risk. Nearly half of the respondents agreed the individual should be
prevented from piloting aircraft, and only 1/3 of respondents disagreed. Additionally,
the responses to Question 18 and to Question 19, which looked to see how individuals
respond to a high risk individual identified by a non-genetic test, were similar. This indi-
cates that individuals in the military do not necessarily see genetic testing as inherently
different than non-genetic testing. In the case of the F/A-18 pilots in Question 18 and
19, the resulting chance of cardiac problems from the tests were the determining factors
in the decision to agree or disagree, not the nature of the test itself.

Finally, we discuss the results regarding Questions 20 and 21, which ask respondents to
indicate what level of risk to develop genetic disease would make the genetic test useful
in general (Question 20), and be useful for making employment decisions in the military
(Question 21). Table 21 displays the percentage results and 95% confidence intervals of
the results, and Figure 82 visually displays the distribution of responses and differences
between the responses between the two questions. the “No GT” response indicates that
no genetic test should be implemented in the military or no genetic test would be useful
regardless of the certainty of disease it indicates.

From Table 21 and Figure 82, it can be seen that the majority of individuals, when an-
swering Question 20, appear to have values between 25% certainty of disease and 99%
certainty of disease where they believe the genetic test may be useful. Generally, indi-
viduals seem to respond that a test with a less than 25% certainty of disease is not as
useful, and requiring 100% certainty of disease from a genetic test does not appear to
be a required standard in general. Additionally, less than 5% of respondents said that
no genetic test (No GT) would be useful. This indicates that individuals are willing
to accept some uncertainty in a genetic test result, and overall most individuals in the
military are open to the idea of genetic testing when it relates to identifying disease.

The responses to Question 21, however, show that military members require higher stan-
dards of certainty of genetic tests when employment decisions are being made. This makes
sense, since it would be expected that a test should be accurate if it is used to affect an
individual’s professional career. less individuals accepted lower certainty of disease, and
more individuals said that 100% certainty was required. Additionally, a greater amount
of individuals responded that no genetic test should be implemented to make employ-
ment decisions in the military. These results indicate that individuals in the military
may view genetic screening as useful in general and accept some inaccuracy, but do not
accept as much inaccuracy and do not accept genetic screening as much if it is used to
make employment decisions.
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Table 20: Military Opinions on Genetic Testing (Q12-19)
All values displayed in percentages. 95% confidence intervals given below every value.

Question Agree Neutral Disagree

Q12: I am curious about my disposition to
develop genetic disease.

68.5 23.8 7.7
(64 .5 , 72 .7 ) (19 .8 , 27 .9 ) (3 .6 , 11 .8 )

Q13: I would have my newborn child genetically
tested to learn which diseases they may develop
in adulthood.

62.3 19.8 17.9
(58 .1 , 66 .7 ) (15 .5 , 24 .2 ) (13 .7 , 22 .4 )

Q14: I would want to know if I had a genetic
condition that is treatable.

92.9 6.0 1.0
(90 .9 , 95 .1 ) (4 .0 , 8 .2 ) (0 .0 , 3 .1 )

Q15: I would want to know if I had a genetic
condition that currently has no effective
treatment or cure.

35.1 17.7 47.2
(30 .4 , 39 .9 ) (13 .1 , 22 .5 ) (42 .5 , 52 .0 )

Q16: A person identified with genetic risk of
disease should be disqualified from military
service or reassigned to a different position.

14.3 23.8 61.9
(10 .1 , 18 .8 ) (19 .6 , 28 .3 ) (57 .7 , 66 .4 )

Q17: I am worried that if I were to have genetic
testing, the results may not stay confidential.

60.5 16.9 22.6
(56 .2 , 65 .0 ) (12 .7 , 21 .5 ) (18 .3 , 27 .1 )

Q18: A Navy F/A-18 pilot has undergone
genetic testing and is found to have a genetic
variant with a 40% chance of causing sudden
cardiac death over 5 years. This individual
should be prevented from piloting aircraft.

45.4 21.4 33.3
(40 .7 , 50 .2 ) (16 .7 , 26 .2 ) (28 .6 , 38 .1 )

Q19: A Navy F/A-18 pilot has undergone
routine, non-genetic blood pressure and
cholesterol testing. The tests indicate that there
is a 40% chance of cardiac arrest over the next 5
years. This individual should be prevented from
piloting aircraft.

47.0 20.0 33.1
(42 .3 , 51 .8 ) (15 .3 , 24 .8 ) (28 .4 , 37 .9 )
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Table 21: Risk of Disease and Genetic Testing (Q20-21)
All values displayed in percentages. 95% confidence intervals given below every value.

Question <25% 25%-49% 50%-74% 75%-99% 100% No GT

Q20
7.9 21.8 38.1 24.8 3.2 4.2

(3 .4 , 12 .7 ) (17 .3 , 26 .6 ) (33 .7 , 42 .9 ) (20 .4 , 29 .6 ) (0 .0 , 8 .0 ) (0 .0 , 9 .1 )

Q21
2.8 16.5 22.6 22.8 11.3 24.0

(0 .0 , 7 .4 ) (12 .1 , 21 .1 ) (18 .1 , 27 .1 ) (18 .3 , 27 .3 ) (6 .9 , 15 .8 ) (19 .6 , 28 .5 )

Q20: In your opinion, what level of risk to develop the disease makes genetic testing
useful?
Q21: In your opinion, what level of risk to develop the disease should an individual
be considered for military disqualification or reassignment for medical reasons based
on a genetic test?

Figure 82: Responses to Questions 20 and 21. Notice how for question 21, which asks
what certainty of knowing disease from a genetic test should be required to make military
employment decisions, more certainty is required and more individuals say that a genetic
test should not be used regardless.
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12.2.3 Differences in Responses Among Subgroups

Questions 2-7 were used to identify subgroups of individuals to see if the responses to
Questions 8-21 were any way dependent on the responses to Questions 2-7. In this section,
we discuss some dependencies which we find interesting and significant. It is important to
note that the responses to Question 8 were grouped the same way they were in Table 17,
and Questions 12-19 were analyzed with the combined Agree/Neutral/Disagree responses
used in Table 20.

Table 22 displays χ2 p-values of questions we find dependent on another. In the table, an
X indicates an insignificant p-value > 0.05. p-values less than 0.05 are displayed. These
low p-values indicate that there is some dependency of the response to one question to
another. For example, Table 22 indicates there is a dependency on how an individual
responded to Question 2 and Question 8a, but no dependency on how an individual
responded to Question 2 and Question 8b. Bolded low p-values are discussed in this
section. Unbolded p-values show dependency that we do not discuss. All questions are
listed in Appendix ??. The sub-questions among Questions 8 and 10 represent the differ-
ent possible reasons for wanting/not wanting to be genetically tested. The questions are
numbered as they have been previously in this section. Questions 8a-8e and 10a-10g are
the responses to the questions asking individuals to rate reasons for wanting (Q8) and
not wanting (Q10) to take a genetic test. They are displayed the same order as in the
survey form in Appendix D.3.

We first discuss the relationship between Question 2 and Questions 8-21. We found that
individuals who have been in the military for a longer period of time were less likely to
place importance on their risk for genetic disease (Q8a) as a reason for being tested, and
also were less likely to worry about losing their job from the results of a genetic test
(Q10f). These results may be explained by the fact that the individuals have progressed
farther in their careers and are older, and so are not as concerned about losing their jobs
and may be less concerned with genetic disease in general. Additionally, individuals who
had spend more time in the military were less likely to trust modern medicine (Q10b)
and were also less likely to respond that they would have their children screened for ge-
netic disease (Q13). Individuals who had spent more time in the military were also less
likely to agree with preventing an individual from piloting aircraft as a result from both
a genetic and non-genetic test (Q18 and Q19).

The relationship between Question 3 (do you have any military service outside ROTC/service
academy) and Questions 8-21 parallels somewhat with the relationship between Question
2 and 8-21. Individuals who had service outside of ROTC/service academy were less
likely to be concerned about losing their jobs (Q10f), less likely to want to have their
children genetically tested (Q13), and less likely to agree that the individual in Q18 and
Q19 should be prevented from piloting aircraft. Additionally, individuals who had service
outside of ROTC/service academy were less concerned about the impact the results of
genetic testing may have on their families (Q10a), said their risk of developing genetic
disease was smaller (Q11), and were also more concerned about losing their insurance as
a result from a genetic test (Q10e) than individuals who have only been at ROTC/service
academy. Overall, individuals who have service outside of ROTC/service academy are
less likely to be concerned about family effects, job loss, and view thier risk of genetic
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Table 22: χ2 p-values displaying the relationships among the answers to identifying ques-
tions (Q2-Q7) and opinions of genetic testing in the military (Q8-Q21). X represents
p > 0.05. Bolded p-values are discussed in the main text.

Related Question Q2 Q3 Q4 Q5 Q6 Q7

Q8a 0.03 X 0.0003 0.003 0.03 X
Q8b X X X 0.03 X X
Q8c X X 0.02 X 0.01 X
Q8d X X 0.01 X 0.0001 X
Q8e X X 0.05 0.02 X X
Q9 X X X X X X
Q10a X 0.03 X X X X
Q10b 0.02 X 0.02 X X X
Q10c X X X X X X
Q10d X X X X 0.005 X
Q10e X 0.04 X X X X
Q10f 0.0007 0.0001 X X X X
Q10g X X X X X X
Q11 X 0.008 X 0.01 0.03 X
Q12 X X X X 0.04 X
Q13 0.006 0.03 X X X X
Q14 X X X X X X
Q15 X X X X X X
Q16 X X 0.03 X X X
Q17 X X X 0.02 X X
Q18 0.05 0.0009 X X X X
Q19 0.01 0.0001 X X X X
Q20 X X X X X X
Q21 X 0.04 X X X X

disease as smaller, whereas individuals who have had only ROTC/service academy expe-
rience are more likely to be concerned about family effects, job loss, but are less worried
about the loss of insurance.

We found one interesting correlation between individuals that reported having been
through the process of a medical waiver (Question 4) and the response to Question
16: whether they believed genetic testing should be implemented in the military. Indi-
viduals that have been through the medical waiver process were less likely to agree that
genetic testing should be implemented in the military and be used to make employment
decisions. We attribute this to the fact that being through the medical waiver process
exposes individuals to the fear of being discharged for a medical condition.

Individuals who answered that they had a family member who had a medical condition
thought to be genetic/inherited (Q5) were found to more likely agree that they were
concerned the results of their genetic test would not stay confidential (Q17). This may
be due to the fact that they are more concerned the results of their tests may be used
against them.
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Several interesting relationships among gender (Q6) and the responses to Questions 8-
21 were found. Females were more likely to want to be genetically tested to “learn
about my risk” (Q8a) and to “know if I need to get screening tests more often” (Q8c).
Additionally, females were more likely to respond that they agreed they were curious
about their disposition to develop genetic disease (Q12). A possible reason for this is
the increasing awareness for the genetic componet of breast cancer and BRCA1/BRCA2
testing. BRCA1/BRCA2 are two genes known to be risk factors for aggressive breast
cancer. When an individual tests positive for certain mutations in BRCA1/BRCA2, it is
reccomended they have more screening tests and monitoring for breast cancer [47]. Fur-
thermore, females were more likely to want to undergo genetic testing “to be reassured”
(Q8d) and expressed more concern over emotionally handling the results of the genetic
test (Q10d).

We found no relationships among the amount an individual said they knew about genetic
screening (Question 7) and any of the responses of Questions 8-21. Knowledge about
genetic testing does not seem to cause opinions regarding the testing to change, and the
results appear to be independent of another.
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13 Discussion

13.1 ClinVar Analysis and Predicting Pathogenic Variants

The goal of this study was to determine the feasibility, cost/benefit, impact, and factors
impacting implementation of genetic testing in the military. We started this study with
an exploration of ClinVar pathogenic variants for all conditions by building a computer
program that found all of the pathogenic or likely pathogenic variants without conflict-
ing evidence in ClinVar for a select number of genes deemed by the ACMG as clinically
significant, and also projected to impact military service. We took these pathogenic
variants and found the frequency of the variants in the gnomAD database. From Table
1, which displays the frequency of the pathogenic variants for each gene and associated
condition, we can see much variability in how often these variants occur in the gnomAD
population. Some variants (such as SDHD and SDHB) occur very frequently (> 0.01),
and some variants (such as MEN1) occur much less frequency (< 0.0001). In total, the
frequency of all of these variants in gnomAD was 0.305, indicating that if variants are
inherited independently and rarely simultaneously, around 30% of the population would
have a pathogenic variant. This variability in pathogenic variant frequency as well as
the commonality of pathogenic variants illustrates two principles that make only looking
at ClinVar problematic. The first issue is the fact that some diseases are more explored
than others, which causes wide variability in the number of pathogenic variants per dis-
ease and also causes many pathogenic variants to be not included in the ClinVar list
for less explored diseases. Secondly, the fact that pathogenic variants have incomplete
penetrance: that having a pathogenic variant does not guarantee disease, makes looking
at ClinVar problematic.

Instead of focusing on every condition that could possibly impact military service for
the rest of the study, we looked at one, and possibly the most impactful, disease in the
military: Hypertrophic Cardiomyopathy. The focus on one disease was to allow us to
obtain the most high-quality analysis possible for one condition that could be eventu-
ally extrapolated to other conditions. We began this by predicting what variants that
cause HCM are not included in ClinVar by creating a logistic regression model built upon
variants classified as pathogenic by ClinVar. From this endeavor, we discovered several
important findings.

Firstly, from the analysis of the 1000 genomes database outlined in section 7.4, we found
that the pathogenic variants in HCM do not appear to be linked: that they are inherited
independently of another. This is important for analysis, because the gnomAD frequen-
cies may be treated as the true frequencies in the population, since an individual is not
expected to have more than one pathogenic variant.

Predictive model performance with different variables also allowed important findings.
In the top five models according to AIC over both MYBC3 and MYH7, all of the models
included dbscsnv (splice indicator) and an indicator for an amino acid change. We see
through this analysis the importance of these parameters in model selection: that splice
indicator and amino acid change indicators are crucial for good model performance. How-
ever, it is also interesting to note that these factors perform poorly by themselves. The
model with splice indicator by itself was ranked 63/64, and the model with amino acid
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change indicator by itself was ranked 53/64. From this, we can see that there is no single
parameter that overrules others in importance in model building, and instead it is the
correct combination of parameters that allows a model to operate most effectively. An-
other important finding was that whole-genome algorithms of predicting conservation and
deliriousness did not perform as well as custom models with a variety of parameters fitted
to two specific genes. CADD, a widely recognized model for predicting pathogenicity of
variants, was ranked 37/64 models when placed alone in logistic regression. Although
CADD performed better alone than any other single parameter, its performance by itself
was not adequate in comparison to other models with combined parameters. From this,
it is presumed that the difference in model performance is due to the localized nature of
the model: the fact that CADD is fitted to the whole genome, and that the models built
in this study are fitted to two specific genes of a specific condition.

Additionally, the difference between how models fit a small amount of data verses a larger
set of data can be seen through building the logistic regression models for MYH7 and
MYBPC3. The top ranked model for MYH7 included Gerp, splice indicator, and amino
acid change; the top ranked model for MYBPC3 included amino acid change, Vertebrate
PhyloP, splice indicator, and allele frequency. Even among two genes that cause the same
condition, variation can be found in what parameters best predict pathogenicity in the
two genes. We choose to not independently assign models to the separate genes, however,
and assign a model that generalized over both genes to avoid overfitting. Due to the small
dataset in each gene of ClinVar pathogenic variants (44 for MYH7 and 46 for MYBPC3),
we wanted to assure that the model we used further in the simulation was generalizable
over the data in both genes.

After analyzing the performance of the model, which had a cross-validated sensitivity of
94.4% and a specificity of 99.7% at a probability threshold cutoff of 0.7, we conclude that
the model built in this study fits the ClinVar data well. We present this as evidence to
suggest that our model can be used to predict pathogenicity of variants. However, there
are still many more analyses regarding our model that may be performed to further assess
its ability to predict pathogenicity. These further analyses are explained in Section 13.6.1.

After creating a model that had an adequate sensitivity and specificity, our cost/benefit
simulation allowed us to determine the result of implementing genetic testing in the mili-
tary. The model, as a whole, classified more variants than we found were able to possibly
be pathogenic. This means that although the model was good at distinguishing between
pathogenic and benign ClinVar variants, it likely overclassified new variants as pathogenic
that have borderline parameters. However, we account for this by creating the “ranked
variant” list, which allows us to only include the “top” pathogenic variants as ranked
by the model. Based on this list, and a variety of other simulation settings discussed
in Section 8, we are able to compare six cases with different levels and approaches to
screening.

13.2 Determination of the Optimal Diagnostic Test

Determination of what is the “best” case to perform genetic screening on military pop-
ulations is a somewhat subjective determination, and we hope that the results obtained
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from this study will be able to guide future individuals to determine the most appropriate
way to utilize or not utilize genetic testing. However, we provide evidence to suggest that
genetic testing for use in military population-level screening for HCM is a possibility both
from a monetary standpoint and from the standpoint of diagnostic value. Additionally,
compared to echocardiogram only screening, the genetic tests outperform echocardio-
grams substantially from a monetary standpoint for all combinations of P (V AR|HCM)
and # of variants, especially for lower genetic test costs. Genetic tests with echocardio-
gram follow-ups also have higher specificities than echocardiogram-only tests, even when
comparing Case 3 (a genetic test followed up by a maximum-accuracy echocardiogram) to
Case 4 (a maximum-specificity echocardiogram). The sensitivity of the genetic tests with
echocardiogram follow-ups decreases compared to the pure echocardiograms; however the
decrease in sensitivity is offset by an increase in specificity.

Overall, we notice several broad trends:

1. Echocardiogram-only tests do not vary in any measurements with chang-
ing P(VAR|HCM) or # of variants. This result illustrates that varying genetic
parameters does not affect a non-genetic test, in this case echocardiography, as ex-
pected.

2. For increasing P(VAR|HCM), the sensitivity, accuracy and Net benefit
of the genetic tests (cases 3, 5 and 6) increase, and the FOR, FDR and
number of deaths decrease. If the proportion of individuals who have HCM
who also have a variant increases, the genetic test will become better at detecting
people who have HCM.

3. For increasing # of variants, the specificity, accuracy, and discharge deathrate
of the genetic tests decreases, and the FOR and FDR increase. The Net
benefit also decreases slightly for cases 3 and 5, but not for Case 6. If the number of
individuals who have pathogenic variants increases without changing the number of
individuals who have a variant and have disease (P (V AR|HCM)), more people will
be falsely classified as “diseased,” and the utility of the genetic test will decrease.

4. Genetic tests vary more with changing genetic variables the less specific
their follow-up tests are. Case 6, with a non-existent follow-up test, exhibits
the largest variation among all of the measurements for changing P (V AR|HCM)
and # of varaints (the slopes in the graphs are more severe and the curves shift
more dramatically). Case 3 varies less than Case 6 for the changing genetic variants
which has a follow-up maximum accuracy echocardiogram. Case 5 varies even less
than Case 3, with a follow-up maximum specificity echocardiogram.

From the list of broad findings above, we can draw some conclusions about how the most
effective screening test may be identified. The most effective treatment will provide ade-
quate detection of HCM to prevent death without overclassifying individuals as diseased.
We discuss each case below in relation to the measures we used in the results Sections 9
and 10.

Echocardiogram Only Tests (Cases 2 and 4): Echocardiogram only screenings are
both not specific enough and too expensive to currently implement. The maximum accu-
racy echocardiogram screening (Case 2) overclassifies too many individuals to be deemed
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effective. With an average specificity of 85.1%, over 2,000 officers and 20,000 enlisted in-
dividuals would be erroneously discharged due to the echocardiogram test. It can be seen
in this analysis the importance of having an extremely high specificity in population-level
screenings: a change in very small percentages in specificity drastically changes the num-
ber of false positives, and in this case, the number of individuals erroneously discharged.
Although Case 2 does pick up a fair number of individuals that are diseased, it cannot be
considered a realistic option to use for population-level screening due to its low specificity.

Case 4 is a much more specific echocardiogram only test than Case 2. Its specificity is
greater than that of Case 2, but is still lower than cases 3 or 5 for every P (V AR|HCM)
and # of variants combination. Case 4, on average, has approximately 17 officer false
positives and 150 enlisted false positives. Although these numbers are smaller than for
Case 2, they are not ideal. Additionally, Case 4 has a lower sensitivity than Case 2, pick-
ing up on average only approximately 60% of those diseased. With increased specificity
that makes the screening option somewhat more probable, a decreased sensitivity occurs
as well, and Case 4 is not able to prevent as many deaths as Case 2.

For both of the echocardiogram screenings, at the cost of echocardiogram set in our sim-
ulation, both of the screenings are too expensive to implement. The military has on
average a negative Net benefit and loses a significant amount of money in our simulation
with the use of the echocardiogram only screenings. However, it must be noted that if the
echocardiogram were to decrease in price, the screening may become more cost effective.

Genetic Test Followed by Echocardiogram (Cases 3 and 5): Both Cases 3 and 5
may be viable screening tests for the military to implement if the cost of genetic testing is
low enough. In comparison to Cases 2 and 4, Cases 3 and 5 have relatively high specifici-
ties and do not erroneously discharge individuals, especially with a low # of variants.
Case 3 erroneously discharges between approximately 1 and 10 officers and 1 and 90 en-
listed on average depending on the P (V AR|HCM) and # of variants. Case 5 falsely
discharges almost no individuals, and has a specificity greater than 0.999. FDR for both
of these cases is extremely low as well (between 0.3 and 0 for Case 3 and approximately 0
for Case 5), indicating that if an individual is flagged as “diseased” in cases 3 or 5, they
likely do have HCM. The discharge deathrate for Case 3 ranges from approximately 5%
for a high # of variants, and 9% for a low # of variants. The discharge deathrate and
for Case 5 is constantly around 9%. This indicates that many of the individuals that are
discharged by these genetic tests would have died had they been in the military.

The sensitivity of Case 3 varies depending on the value of P (V AR|HCM), with an av-
erage sensitivity below 0.5 for a P (V AR|HCM) = 0.5, and a sensitivity as high as an
average of approximately 0.77 for a P (V AR|HCM) = 0.9. Additionally, the Net benefit
of officer Case 3 becomes positive with a genetic test cost of approximately $100 (and
around $10 for enlisted and $20 for combined simulations), varying slightly depending
of the value of P (V AR|HCM) and # of variants. Because of the higher specificity of
Case 3, the comparable sensitivity and ability to prevent death, and the perceived benefit
when lower-cost genetic tests are implemented, we conclude that Case 3 is a reasonable
screening test to use given genetic test costs are low enough.

The sensitivity of Case 5 is lower than that of Case 3, and like Case 3 varies depending
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on the value of P (V AR|HCM). However, the specificity of Case 5 is near 100%, and
less than one individual per population for both officers an enlisted, on average, is erro-
neously discharged using Case 5. Case 5 has a lower Net benefit than Case 3 and requires
a cheaper genetic test to “break even” than Case 3, but this value is not too drastically
lower to be out of range of Case 3. If near complete specificity is desired, Case 5 may be
a more viable option than Case 3 to pursue for the military.

Genetic Test Only (Case 6): The potential benefits of Case 6 are highly dependent on
the scientific parameters # of variants and P (V AR|HCM). Thus, it would require fur-
ther scientific discovery before responsible implementation. Case 6 varies in all measures
more than any other case for changing P (V AR|HCM) and # of variants values. When
a high P (V AR|HCM) and low # of variants are used, Case 6 outperforms nearly all
other cases in sensitivity, and possesses close to complete specificity. Case 6 also offers
the most Net benefit for a given P (V AR|HCM) and # of variants value compared to
any other case. However, the danger of implementing Case 6 is that individuals may
be discharged from the military without phenotypic proof that they actually have the
disease, which presents an ethical issue.

Overall: From the previous analysis, we can conclude that genetic tests followed by
echocardiograms outperform echocardiograms alone with regards to cost and specificity,
and have comparable sensitivities to echocardiograms alone. However, the performance
of genetic tests increases with increased P (V AR|HCM) and decreased # of variants.
Therefore, in order to implement genetic screening, these values should be optimized as
well. Paradoxically, the development of genetic knowledge may accumulate much faster
if a population-level screening is in place. Despite these concerns, we provide data that
allows the military to determine at what point genetic screening may be cost-effectively
implemented based on the known P (V AR|HCM), # of variants, and genetic test cost.
The question whether Case 5 or Case 3 is more effective is left to whether the military
wishes to virtually eliminate false positives (Case 5), or maximize the number of indi-
viduals that have HCM and Net benefit (Case 3). Additionally, the military may choose
to be selective in the population that it uses the screenings on. We demonstrate in our
simulation that screening officers is much more cost-effective than screening enlisted. De-
pending on the cost of the genetic test available, the military may decide to only screen
officers, or screen both officers and enlisted.

13.3 The Cost of a Genetic Test

Genetic tests currently come in two broad categories: next-generation sequencing where
whole-genome or whole-exome sequencing can be performed, and array sequencing, where
a limited number of genetic regions in the genome are analyzed for specific variants.

Next Generation sequencing (NGS) is a technique where DNA is sequenced from mil-
lions of DNA fragments in parallel. The software “aligns” overlapping DNA fragments
together by matching the fragments like a puzzle, providing a substantial “depth” of
coverage, where each DNA base pair may be sequenced 50 or more times to provide for
the greatest amount of accuracy. Next generation sequencing allows a massive amount of
information (a whole genome) to be gathered for a relatively cheap price. Next generation
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sequencing has driven the cost of genomic sequencing down from over a 3 billion dollars
per genome to close to $1000. It is anticipated that a whole genome may be sequenced
for less than $1000 by 2021 [28, 48]. However, the high volume of tests required by the
military may cause costs to change.

The other type of genetic test that may be implemented is a DNA microarray. A DNA
microarray works by having specific probes that can detect specific variants in specific
genes. Although these do not provide infromation for the whole genome, they are cur-
rently cheaper than whole genome sequencing and are estimated by the NIH Center for
Inherited Disease Research to cost $120-$170 per array [49, 50]. Additionally, the Chil-
dren’s Hospital of Philadelphia lists a microarray analysis for as low as $30 [43]. These
costs are close to or even under the “break even” costs associated with the officer simu-
lations and the combined officer and enlisted simulations for cases 3, 5 and 6.

With the decreasing cost of genetic tests, it may not be unrealistic that genetic tests may
be obtained for $100 or less. Currently, however, costs of next generation sequencing
appear to be higher than the “break even” costs calculated in this analysis. A microarray
analysis, however, has a cost much closer to and may even be able to currently match
this break even genetic test cost.

13.4 Survey Analysis

We provide here discussion of the results from our survey analysis about attitudes of
genetic screening in a military population. We conclude that individuals in the military
are not inherently opposed to genetic screening, but have concerns regarding its use to
determine employment and have concerns about its confidentiality.

We found from our survey that most individuals in the military want to be genetically
tested to learn about their own and their children’s risk of developing genetic disease. We
found that most individuals (approximately 70%) are curious about their disposition to
develop genetic disease, and an overwhelming majority (> 90%) would want to know if
they had a genetic condition that was treatable. From this, we conclude that individuals
in the military are open to the concept of genetic testing, and have expressed that they
would use genetic testing to find disease and disease risk in both themselves and their
children.

However, we also see some of the concerns individuals have regarding genetic screening in
the military. Approximately 60% of individuals list either losing their job or insurance as
their #1 concern regarding genetic screening. Only around 15% of individuals agree that
genetic screening should be implemented to make employment decisions in the military.
Confidentiality is also a concern, with around 60% of individuals agreeing it would be a
concern for them if genetic testing were implemented. Individuals who had spent more
time in the military were more likely to be opposed to genetic testing.

Despite this, almost 50% of individuals agreed an individual should be prevented from
piloting aircraft given a scenario when their genetic test showed they had substantial risk
of sudden cardiac death. Respondents also did not significantly differ in their responses
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to the genetic test and the non-genetic test. We present this to show that despite the
opposition to genetic testing for employment, when given the results and potential con-
sequences, more individuals choose to use genetic testing to make employment decisions.

We conclude that individuals in the military generally view genetic testing as a useful
medical tool, however oppose it being used as a screening tool. If the military were to
implement genetic testing, it may have to overcome this opposition to the screening test
being used. The military may have to educate its members and provide counseling in
order to successfully implement genetic testing. Additionally, because most respondents
stated that they trusted modern medicine, allowing the medical community to present
its case for genetic testing may also further its implementation.

13.5 Ethical Issues Revisited

After our analysis, we revisit some ethical concerns which should be considered regarding
genetic screening in the military.

13.5.1 What Makes a Variant Pathogenic?

The American College of Medical Genetics recommends that findings of pathogenic vari-
ants in a select number of genes be reported to individuals to allow them to have in-
formation to make important medical decisions. However, the ACMG is also concerned
about how various testing companies define “pathogenic.” With the explosion of genetic
infromation and new algorithms used to determine pathogenicity, it is a concern that test-
ing companies and laboratories are being too liberal in their definition of “pathogenic.”
Karen E. Weck writes in the March 2018 issue of Genetics In Medicine [51]:

We have an ethical imperative in medical genetics not to overclassify the
pathogenicity of variants because this has significant potential to cause down-
stream harm to patients. Otherwise, we run the risk of genomic sequencing
being perceived as a flawed technique with limited clinical utility. In inter-
preting the results of gnomic sequencing analysis, sequence variants should
therefore be considered “uncertain until proven guilty.”

Weck’s concern highlights that, in genomic medicine, there must be proof before a variant
is classified as “pathogenic.” This situation discourages the use of the variants classified
by our model as pathogenic but not ClinVar without any other “check.” Therefore, at this
current time, it would be most appropriate to check variants with a follow-up echocar-
diogram to assure that individuals are not disqualified from military service based on
the result of an unproven genetic test. However, when the predictive power of genomic
medicine improves, Case 6 could become a possibility.

13.5.2 Providing Medical Care

If the military provides a genetic test and follow-up echocardiogram and detects HCM in
a patient, how much more responsibility do they have towards that patient to assure that
they receive proper counseling and follow-up medical care? The military must confront
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the fact that HCM and other genetic diseases are lifelong conditions, and the care and
patient counseling required for their treatment is substantial. If the diagnosis of HCM
is made, the military must determine how much counseling it wants to give patients
being discharged about the clinical recommendations regarding HCM such as exercise
restrictions, and the possibility of ICD implants and beta-blockers. Additionally, does
the military have an obligation to refer patients to outside care providers if a diagnosis of
HCM is made? These questions must be addressed before screening can be implemented.
Additionally, providing counseling and treatment services would cost the military addi-
tional money.

13.5.3 The Permanent Consequences of A Marked Genome

Genetic testing is unique in that it analyzes one of the few things that, at least currently,
is completely unique to an individual and static throughout an individual’s life. Discov-
ering a pathogenic variant is a life-changing event, and is even more life-changing if the
diagnosis can impact one’s ability to pursue a desired career in the military, drastically
changes lifestyle, and one may have to begin treatment for a chronic disease. Therefore,
diagnosis must be made carefully and not without regard for the personal and psycho-
logical effects it may have on individuals. The survey developed in section 12 tries to
address some of these questions; however, the hiring of genetic counseling services will
likely be required by the military for the implementation of genetic screening to be done
ethically.

13.5.4 The Danger Of Spillover into Other Professions

The Genetic Information Nondiscrimination Act (GINA) prohibits any civilian employer
from discriminating any employment decision based off of the results of a genetic test.
However, due to the unique demands of the military, this law does not apply. There is a
possibility that implementation of genetic screening in the military may set a precedent
for other workplaces to administer and discriminate based on genetic tests. Therefore,
implementation of genetic screening in the military must coincide with careful language,
regulations and monitoring of the workforce to assure that it is not perceived as, and
does not set a precedent for other industries discriminating based on genetic results.

13.5.5 The Slippery Slope of Genetic Screening for Disease and Desirable
Traits

Included in this analysis is genetic screening to identify and prevent the military from
allowing individuals to perform military duties with a disease that causes sudden car-
diac death. We present in this study a mutually-beneficial scenario: screening will both
prevent the military from incurring the cost of death and may save individuals lives by
making them aware of their genetic condition. However, it is important to note that due
to the breadth of genetics, it may one day become a slippery slope between what is con-
sidered a disease and what the military considers as “enhancement” of their population.
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Due to the unique nature of military work, it may be mutually detrimental for both the
military and for an individual for an individual to participate in military training or join
the military. We offer HCM and SCD as an example of this. Additionally, the scenario we
offer is one where it may become physically impossible for an individual in the military
to perform their duties. However, we note that the military, in theory, could use genetic
screening to identify not only individuals who possess genetic disease, but individuals
who possess desirable genetic traits. We view this as an ethically treacherous result.

The military finds strength in its diversity and also in its capabilities to transform individ-
uals with a varying set of backgrounds and skill-sets. The military and its transformative
nature allows for individuals to propel themselves to success though hard work from a
myriad of backgrounds. Implementing genetic screening to remove individuals with “less
desirable” traits is a result to be avoided. We propose that the military may avoid this
ethically treacherous result by restricting genetic screening to only diagnosable condi-
tions, and additionally only to conditions that may manifest themselves as ones that
would make it physically impossible or so physically prohibitive that an individual will
be unable to optimally perform their required duties. It would also be the best case if the
screened individuals had a mutually beneficial experience: such as the diagnosis of HCM,
which could prevent the individual from having sudden cardiac death upon discharge of
the military. However, this still leaves some area for interpretation, such as variants such
as BRCA1 or BRCA2 which cause an increased risk of aggressive cancer. The military
must look carefully at what it considers as genetic disease in order to implement genetic
screening ethically.

13.6 Future Work

13.6.1 Validation of Logistic Regression Model

Note that we treat the “top variants” as truly pathogenic in the simulation. Thus, veri-
fication of the model through new scientific discoveries is critical to validate results.

1. Use other pathogenic disease databasees to determine the effectiveness of
the model: ClinVar is not the only disease database that exists to provide an aggre-
gate of disease associations with variants. The Human Genome Mutation Database
(HGMD) is another database that provides information on the pathogenicity of
variants. Looking at the results of the model used in comparison to the HGMD
data is another way to determine the accuracy, sensitivity and specificity of the
model.

2. Run the model on all possible single nucleotide polymorphisms in MYH7
and MYBPC3: The model may be performed on every single SNP possible in the
genes MYH7 and MYBPC3, instead of merely all of the variants present in gno-
mAD. It would be expected that if the model is run on these variants not included in
gnomAD, the result would possess a much higher proportion of pathogenic variants
to total variants than before, because the variants not present in a large, asymp-
tomatic population are much more likely to be pathogenic (no individuals have the
variants in the general popultion, it would be presumed that they are more selected
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against and cause disease than variants present in the general population). If, after
running the model on all possible variants and a higher Pathogenic variants

Total variants
is found

than in gnomAD, the model is more likely to be correct.

3. Look for new confirmed pathogenic variants that arise: New pathogenic
variants are being found every day. Table S2 displays the variants classified by
the model as “pathogenic” in order of their ranking in the model and in ClinVar.
As more and more variants are found to be clinically significant, the ability of
the model to predict these future variants can be assessed. The more times the
model is correct in its prediction, the greater its predictive value can be assumed.
Additionally, as mentioned previously, performing genetic testing on a large scale
allows clinically signficant findings to become much more avalible: as we know
more genotypes and clinical result of those genotypes, we can become more and
more capable of predicting the clinical result of future genotypes.

13.6.2 Further Cost-Benefit Analysis

1. Other Costs: Our cost-benefit simulation did not take into account capital costs
or costs of outsourcing genetic tests vs. performing them in-house. Exploration of
these costs may yield different results if they are incorporated.

2. Detection of More Diseases: Our logistic regression model and cost-benefit
analysis performed a specific analysis on one genetic condition and two genes. The
expansion of the analysis to multiple genes may reveal that a greater Net benefit may
be obtained, because more individuals with genetic conditions may be found using
the costs associated with the same genetic test. Future cost-benefit analyses may
focus on how a multi-gene and multi-disease panel genetic tests may be implemented
in the military. However, with expanded genetic and disease coverage, the analysis
must also be concerned with limiting false positives, and the potential for false
positives increases the more genes and diseases that are analyzed.

3. Screening Only on Individuals with Family History of Disease: Individuals
who have family members with HCM or other genetic conditions are at increased
risk for developing the disease themselves. Another cost-benefit analysis could
identify how the military would benefit if it only screened individuals with a family
history of disease. Exploration of this could yield benefits with decreased cost of
screening.

13.6.3 Simulation Improvements

We incorporated and compared a wide variety of screening cases and simulation param-
eters as allowed by the finite timeline of this project. Possible future work includes the
incorporation of the following, some of which are designed to update settings based on
future scientific discoveries and/or changing costs.

1. Widen Range of Probability Settings At the time of running the simulation,
we used a range of P (V AR|HCM) and # of variants values based on extremes
reported in the current literature [5]. If future research reveals that a wider range
of values may be possible, then it may be of interest to analyze this wider range.
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It is straightforward to implement a wider range, however expanding the range of
the simulation would also extend computation time.

2. Updated Cost Figures: Cost values are ever-changing. For example, we used
the Fiscal Year 2015 average cost billed to medicare in the United States [27] to
obtain an average value of cost per echocardiogram. This simulation setting is sure
to change in future years, and may be updated in the future to reflect the changes
in screening and military costs.

3. Multiple Follow-up Scans: The American Heart Association recommends that
an individual has a follow-up echocardiogram once a year following discovery of a
pathogenic variant [11]. The reason for annual follow-ups is because some individ-
uals with HCM will not display the phenotype detectable via echocardiogram until
a certain point in their lives. However, our model simulates a one-time follow up
echocardiogram. In order to simulate a series of follow-ups accurately, a more clear
understanding of the progression of HCM throughout the life of individuals is re-
quired. When this clinical information is incorporated into the medical community,
it too could be incorporated in our simulation. However, we estimate that the cost
to the military may not be significant, since these follow-up echocardiograms will
likely occur on only a small percentage of the population.

4. Vary the Number of Years Individuals Stay in the Military: Our simulation
uses the average time an individual remains in the military as a way of predicting
deaths and costs. However, a future simulation may simulate a military population
with some individuals remaining in the military until over 20 years, and others
leaving the military earlier than the average time an individual stays. This may
change the number of individuals that die of SCD due to HCM.

5. Simulate Continuous Recruitment: In our simulation, individuals that were
discharged or died were not replaced by new individuals joining the force. In the
future, an individual joining the force in a discharged individual’s place may change
the analysis.

13.6.4 Larger-breadth Survey

Our survey was administered to all military members the US Naval Academy as a prospec-
tive study on the attitudes regarding genetic testing in the military. Expanding the sur-
vey to the entire military may be useful to confirm its results generalize over the entire
military population.
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14 Conclusion

From this analysis, we were able to first create a logistic regression model that was
able to predict Hypertrophic Cardiomyopathy-inducing variants in the genes MYH7 and
MYBPC3, and was also able to demonstrate that a gene-specific or disease-specific clas-
sifier is better at predicting pathogenicity than a genome-wide classifier. We also created
a cost-benefit analysis that determined the sensitivity, specificity, lives saved, and Net
monetary benefit incurred by the military for non-genetic and genetic screening options.
Finally, we used a survey to determine the attitudes military members have towards ge-
netic screening in the military.

We conclude that genetic screening followed with an echocardiogram may be a feasible
option for the military to implement given the cost of genetic tests is low enough (ap-
proximately $100 for officers, $20 for a combined officer and enlisted population, and
$10 for an enlisted only population) and the percentage of individuals that have HCM
and variants on the pathogenic variant list match those studied by the simulation. With
current knowledge and technology, it may take time for the cost of genetic screening to be
driven down and for the knowledge available to accurately assess how well genetics can
predict HCM. However, paradoxically, implementation of genetic screening may cause
these discoveries in genetics to be obtained faster.

The ethical, social and psychological impact of genetic screening cannot be overlooked.
Our survey demonstrated that individuals in the military are generally not opposed to
genetic screening as a medical test, but have concerns about its implementation as a
screening test to determine employment, as well as its confidentiality. Before the mili-
tary potentially implements screening, it must consider the education it may require, the
consequences of doing so on an individual basis as well as on a population level and be
aware of the precedent they may be setting for other employers to follow.
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A Appendix: Investigating Interactions

In the body of the paper, we often made references to how certain measures changed
relative to a changing P (V AR|HCM) or # of variants. We held either P (V AR|HCM)
or # of variants constant, and then varied the other variable for a given measure and
a given case. The slope of the resulting lines are known as partial derivatives, where one
variable changes and all other variables are held constant. Thus, if we observe the change
in a measure, and change the # of variants while holding P (V AR|HCM) constant, we
find:

∂measure

∂# of variants
(22)

If we observe the change in a measure, and change the P (V AR|HCM) while holding
# of variants constant, we find:

∂measure

∂P (V AR|HCM)
(23)

As stated at the begining of the analysis, it is possible that ∂measure
∂# of variants

or ∂measure
∂P (V AR|HCM)

may be different for different values of thier respective constants. For example, a measure
may have a positive ∂measure

∂# of variants
if the constant value of P (V AR|HCM) is 0.7, but the

∂measure
∂# of variants

may decrease if the P (V AR|HCM) is held at 0.9.

In this appendix, we have values for certian measures where we found ∂measure
∂# of variants

for

each constant value of P (V AR|HCM), and found ∂measure
∂P (V AR|HCM)

for each constant value of
# of variants. The goal of this appendix is to make it more clear the variables interact
with each other through exploration of these partial derivatives. Note that we only used
the officer simulation for this analysis, however the enlisted simulations returned similar
values.



141

A.1 Accuracy

(a) ∂Accuracy
∂# of varaints (b) ∂Accuracy

∂P (V AR|HCM)

Figure S1: ∂Accuracy
∂# of varaints

is seen to be most negative for Case 6, followed by Case 3, and

zero for cases 2, 4 and 5. ∂Accuracy
∂P (V AR|HCM)

is seen to be most positive for Case 6, followed by
Case 3 and zero for cases 2, 4 and 5. All values appear to be constant for the variation
of the constants for the partial derivatives.
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A.2 Sensitivity

Figure S2 displays the values of ∂Sensitivity
∂# of varaints

and ∂Sensivitity
∂P (V AR|HCM)

for each of their respec-

tive constants. From Figure S2a, it can be seen that for all values of P (V AR|HCM),
∂Sensitivity

∂# of varaints
remains around zero for all cases. Figure S2b displays that a positive con-

stant ∂Sensivitity
∂P (V AR|HCM)

exists for cases 3, 5, and 6 with increasing values from Case 5 to 3 to 6.

(a) ∂Sensitivity
∂# of varaints (b) ∂Sensitivity

∂P (V AR|HCM)

Figure S2: ∂Sensitivity
P (V AR|HCM)

is seen to be most positive for Case 6, followed by Case 3, and

zero for cases 2, 4 and 5. ∂Sensitivity
∂# of variants

is seen to be approximately zero for all cases. All
values appear to be constant for the variation of the constants for the partial derivatives.
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A.3 Specificity

Figure S3 displays ∂Specificity
∂# of varaints

and ∂Specificity
∂P (V AR|HCM)

as changing with their relative con-

stants. It can be seen in Figure S3a that the most negative ∂Specificity
∂# of varaints

occurs with

Case 6, followed by Case 3, and cases 5, 4, and 2 have values of ∂Specificity
∂# of varaints

of approxi-

mately zero. Figure S3b displays that ∂Specificity
∂P (V AR|HCM)

is most positive for Case 6, followed
by Case 3, and zero for cases 5, 4, and 2. These trends occur due to the fact that cases 3
and 5 are “checked” by a follow-up echocardiogram, which decreases the likelihood of a
false positive, and thus lowers the effect that varying the genetic parameters have on the
specificity.

(a) ∂Specificity
∂# of varaints (b) ∂Specificity

∂P (V AR|HCM)

Figure S3: ∂Specificity
∂# of varaints

is seen to be most negative for Case 6, followed by Case 3, and

zero for cases 2, 4 and 5. ∂Specificity
∂P (V AR|HCM)

is seen to be most positive for Case 6, followed
by Case 3 and zero for cases 2, 4 and 5. All values appear to be constant for variation of
the respective constants.
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A.4 False Discovery Rate

Figure S4 brings an interesting result. Previously, in analysis, ∂measure
∂# of varaints

and ∂measure
∂P (V AR|HCM)

remained constant for changing constants associated with the partial derivatives. How-
ever, in this case, both ∂FDR

∂# of varaints
and ∂FDR

∂P (V AR|HCM)
change for cases 3 and 6 with

changing constants. For Case 6, ∂FDR
∂# of varaints

increases steadily at first before leveling off

for increasing P (V AR|HCM). This indicates that these variables interact with another.

(a) ∂FDR
∂# of varaints (b) ∂FDR

∂P (V AR|HCM)

Figure S4: Notice how these partial derivatives are not constant for their respective
constants. Overall, though, ∂FDR

∂P (V AR|HCM)
is negative for genetic tests, and ∂FDR

∂# of varaints

is positive for genetic tests. Case 6 appears to vary in its partial derivatives the most an
generally increase, and Case 3 appears to generally decrease for both ∂FDR

∂# of varaints
and

∂FDR
∂P (V AR|HCM)

.
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A.5 False Omission Rate

(a) ∂FOR
∂# of varaints (b) ∂FOR

∂P (V AR|HCM)

Figure S5: ∂FOR
∂# of varaints

is seen to be most negative for Case 6, followed by Case 3 and

Case 5, and zero for cases 2, 4. ∂FOR
∂P (V AR|HCM)

is seen to be approximately zero. All values
appear to be constant for the variation of the constants for the partial derivatives.
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A.6 Deaths

(a) ∂deaths
∂# of varaints (b) ∂deaths

∂P (V AR|HCM)

Figure S6: ∂deaths
∂# of varaints

is approximately zero for all cases. ∂deaths
∂P (V AR|HCM)

is most negative
for Case 6, followed by Cases 3 and 5. All values appear to be relatively constant with
some variation likely due to random error
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A.7 Discharge Deathrate

The discharge deathrate, like FDR, does not appear to have constant partial derivatives
for all of its constants. Thus, the parameters likely interact. This variation is seen
most prominently for Case 6. Overall, ∂DDrate

∂# of varaints
is negative for genetic tests, and

∂DDrate
∂P (V AR|HCM)

is positive for genetic tests.

(a) ∂DDrate
∂# of varaints (b) ∂DDrate

∂P (V AR|HCM)

Figure S7: The partial derivatives for discharge deathrate do not have a constant slope, es-
pecially for Case 6. Note how ∂DDrate

∂# of varaints
is negative for genetic tests, and ∂DDrate

∂P (V AR|HCM)

is positive for genetic tests.
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B Appendix: Extra Figures for Enlisted Simulations

We display in this section figures for enlisted simulations that have approximately the
same values as in the officer simulations for reference.

B.1 Accuracy

(a) Case 2
σ : {8e-4, 9e-4, 9e-4, 9e-4, 1e-3}

(b) Case 3
σ :{5e-5, 7e-5, 8e-5, 9e-5, 1e-4}

(c) Case 4
σ :{1e-4, 1e-4, 1e-4, 1e-4, 1e-4}

(d) Case 5
σ :{7e-5, 8e-5, 9e-5, 9e-5, 1e-4}

(e) Case 6
σ:{4e-5, 8e-5, 9e-5, 1e-4, 2e-4 }

Figure S8: Heatmaps of the Accuracy for each enlisted case. Standard deviation summary
given as σ : {min, 25th quantile, median, 75th quantile, maximum}
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S9: Accuracy, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slope of each line is negative, with the largest
negative slope with Case 6, followed by Cases 3 and 5, with the y-intercepts of the
lines increasing as the constant value for P (V AR|HCM) increases. The lower grey line
at approximately 0.6 indicates the average Accuracy of Case 4. Note how the enlisted
simulations have approximatley the same values as the officer simulations.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S10: Accuracy, where the P (V AR|HCM) values were changed for four different
# of variants constants. Lines did not change whatsoever for different # of variants
constants. Notice the positive slope for all three cases. Note how the slope increases from
Case 5 to 3 to 6. The lower grey line at approximately 0.6 indicates the average Accuracy
of Case 4. Note how the enlisted simulations have approximately the same values as the
officer simulations.
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B.2 Sensitivity

(a) Case 2
σ : {0.02, 0.02, 0.02, 0.02, 0.02}

(b) Case 3
σ : {0.02, 0.03, 0.03, 0.03, 0.03}

(c) Case 4
σ : {0.03, 0.03, 0.03, 0.03, 0.03}

(d) Case 5
σ : {0.02, 0.02, 0.03, 0.03, 0.03}

(e) Case 6
σ : {0.02, 0.02, 0.02, 0.03, 0.03}

Figure S11: Heatmaps of the sensitivity for each enlisted case. Standard deviation sum-
mary given as σ : {min, 25th quantile, median, 75th quantile, maximum}
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S12: Sensitivity, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slope of each line is approximatley zero,
with the y-intercepts of the lines increasing as the constant value for P (V AR|HCM)
increases. Also note how Case 6 has the highest absolute values for sensitivity for any
given P (V AR|HCM), and Case 5 has the lowest. The lower grey line at approximately
0.6 indicates the average sensitivity of Case 4, and the upper grey line at a value of
approximately 0.85 indicates the average sensitivity for Case 2.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S13: Sensitivity, where the P (V AR|HCM) values were changed for four different
# of variants constants. Lines did not change whatsoever for different # of variants
constants. Notice the positive slope for all three cases. Note how the slope and y-intercept
increases from Case 5 to 3 to 6. The lower grey line at approximately 0.6 indicates the
average sensitivity of Case 4, and the upper grey line at a value of approximately 0.85
indicates the average sensitivity for Case 2.
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B.3 Specificity

(a) Case 2
σ : {8e−4, 9e−4, 9e−4, 9e−4, 1e−3}

(b) Case 3
σ : {2e−6, 2e−5, 3e−5, 3e−5, 6e−5}

(c) Case 4
σ : {8e−5, 8e−5, 8e−5, 8e−5, 9e−5}

(d) Case 5
σ : {2e−7, 2e−6, 3e−6, 3e−6, 5e−6}

(e) Case 6
σ : {4e−6, 6e−5, 7e−5, 8e−5, 2e−4}

Figure S14: Heatmaps of the average Specificity for each enlisted case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S15: Specificity, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the most
negative, and the slopes of the lines for Case 3 have smaller magnitudes, while Case 5
has flat lines. Increasing P (V AR|HCM) shifts the curves up. Dotted grey line is the
average value of specificity for Case 4.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S16: Specificity, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Cases 3 and 6 have positive slopes, with Case 6 having a greater
slope and more variation in intercepts for different values of # of variants. Case 5 has
flat lines at approximately 1. The dotted grey line represents the average value for the
specificity of Case 4.
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B.4 False Discovery Rate

(a) Case 2
σ : {6e−4, 7e−4, 7e−4, 7e−4, 7e−4}

(b) Case 3
σ : {2e− 3, 0.02, 0.02, 0.03, 0.03}

(c) Case 4
σ : {0.03, 0.030.030.030.03}

(d) Case 5
σ : {2e−4, 1e−3, 2e−3, 3e−3, 8e−3}

(e) Case 6
σ : {2e− 3, 0.02, 0.03, 0.03, 0.03}

Figure S17: Heatmaps of the average FDR for each enlisted case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S18: FDR, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the most
positive, and the slopes of the lines for Case 3 have smaller magnitudes, while Case 5 has
nearly flat lines. Increasing P (V AR|HCM) shifts the curves up. Also note the somewhat
logistical behavior of the Case 6 line. Lower Dotted grey line is the average value of FDR
for Case 4, upper dotted grey line is the average value of FDR for Case 2.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S19: FDR, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Cases 3 and 6 have negative slopes, with Case 6 having a
greater slope and more variation in intercepts for different values of # of variants. Case
5 has flat lines at approximately 0. The lower dotted grey line represents the average
value for the FDR of Case 4, the upper dotted grey line represents the average value for
the FDR of Case 2.
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B.5 False Omission Rate

(a) Case 2
σ : {5e−5, 5e−5, 5e−5, 5e−5, 5e−5}

(b) Case 3
σ : {5e−5, 7e−5, 7e−5, 8e−5, 9e−5}

(c) Case 4
σ : {7e−5, 7e−5, 7e−5, 7e−5, 8e−5}

(d) Case 5
σ : {7e−5, 8e−5, 9e−5, 9e−5, 1e−4}

(e) Case 6
σ : {3e−5, 5e−5, 6e−5, 7e−5, 8e−5}

Figure S20: Heatmaps of the average FOR for each enlisted case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S21: FOR, where the # of variants were changed for three different constant
values of P (V AR|HCM). Notice that the slopes of the lines are approximately zero.
Increasing P (V AR|HCM) shifts the curves up. Lower dotted grey line is the average
value of FOR for Case 2, upper dotted grey line is the average value of FOR for Case 4.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S22: FOR, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Cases 3, 5 and 6 all have negatives slopes, with the largest
magnitude of slope of Case 6, followed by cases 3 and then 5. Notice how FOR does not
change with changing values of # of variants. Lower dotted grey line is the average
value of FOR for Case 2, upper dotted grey line is the average value of FOR for Case 4.
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B.6 Number of Deaths

(a) Case 3 (b) Case 5 (c) Case 6

Figure S23: deaths, where the # of variants were changed for three different con-
stant values of P (V AR|HCM). Notice how the curves shift down for increasing
P (V AR|HCM) and have relatively constant slopes.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S24: deaths, where the P (V AR|HCM) was changed for four different constant
values of # of variants. Notice how all Cases have negative slopes.
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B.7 Discharge Deathrate

(a) Case 2
σ : {2e−4, 2e−4, 2e−4, 2e−4, 2e−4}

(b) Case 3
σ : {0.01, 0.02, 0.02, 0.02, 0.02}

(c) Case 4
σ : {9e− 3, 9e− 3, 9e− 3, 0.01, 0.01}

(d) Case 5
σ : {0.02, 0.02, 0.02, 0.02, 0.02}

(e) Case 6
σ : {4e− 3, 9e− 3, 0.01, 0.01, 0.01}

Figure S25: Heatmaps of the average DDrate for each Enlisted case. Standard deviation
summary given as: σ: {min, 25th quantile, median, 75th quantile, maximum}.

(a) Case 3 (b) Case 5 (c) Case 6

Figure S26: discharge deathrate, where the # of variants were changed for three different
constant values of P (V AR|HCM). Notice that the slopes of the lines for Case 6 are the
most negative, and the slopes of the lines for Case 3 have smaller magnitudes, while Case
5 has nearly flat lines. Increasing P (V AR|HCM) shifts the curves up. Lower Dotted
grey line is the average value of DDrate for Case 2, upper dotted grey line is the average
value of DDrate for Case 4.
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(a) Case 3 (b) Case 5 (c) Case 6

Figure S27: discharge death rate, where the P (V AR|HCM) was changed for four different
constant values of # of variants. Cases 3 and 6 have positive slopes, with Case 6 having
a greater slope and more variation in intercepts for different values of # of variants.
Case 5 has flat lines. The lower dotted grey line represents the average value for the
DDrate of Case 2, the upper dotted grey line represents the average value for the DDrate
of Case 4.
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C Appendix: Absolute Number Analysis

In this appendix, we display and explore the trends that occur in the simulations for the
absolute numbers in each analysis: the total numbers of True Positives, True Negatives,
False Positives and False Negatives in each case.

C.1 True Positives: Number of Individuals Diseased & Dis-
charged

The number of people both discharged and diseased, or true positives (TP), is an indi-
cator of the absolute quantity of how well the screening cases can identify HCM. More
true positives indicate that more individuals are being identified as having HCM in a
population, and thus the screening test is better at identifying diseased individuals.

Figure S28 displays the average number of True Positives for each combination of P (V AR|HCM)
and # of variants in the officer simulation over the 1000 iterations. From these heatmaps,
it can be seen that Case 2 has a consistently high number of true positives, Case 4 has a
consistently lower number of true positives, and cases 3, 5 and 6 vary with the number
of true positives with different P (V AR|HCM) and # of variants combinations.

(a) Case 2
σ : {5.01, 5.23, 5.31, 5.37, 5.60}

(b) Case 3
σ : {3.64, 4.03, 4.40, 4.72, 5.12}

(c) Case 4
σ : {4.16, 4.41, 4.48, 4.54, 4.69}

(d) Case 5
σ : {3.07, 3.41, 3.73, 3.96, 4.36}

(e) Case 6
σ : {3.97, 4.36, 4.76, 5.09, 5.59}

Figure S28: Heatmaps of the average number of True Positives for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.
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Figure S29 displays graphs of the number of true positives while holding P (V AR|HCM)
constant and varying the # of variants (Figure S29a), or holding the # of variants
constant and varying the P (V AR|HCM) (Figure S29b). We can see through this anal-
ysis that the number of true positives does not change for any case when the number of
variants changes, and the true positives increase when the P (V AR|HCM) increases for
only Cases 3, 5 and 6.

In addition to seeing how the number of true positives changes for different # of variants
and P (V AR|HCM), we also can gauge from Figures S28 and S29 which cases have an
absolute higher number of true positives for any combinations of # of variants and
P (V AR|HCM). For higher P (V AR|HCM) values, the genetic tests (cases 3,5, and 6)
perform better than at lower P (V AR|HCM) values. Case 6 outperforms all other cases
at a P (V AR|HCM) of 0.9, however does not perform as well at lower P (V AR|HCM)
values. Cases 3 and 5 perform below Case 6, however still increase in performance with
increasing P (V AR|HCM).

(a) Vary # of V ar. (b) Vary P (V AR|HCM)

Figure S29: Officer Simulation. Average TP does not change significantly for variation of
# of variants. However, cases 3, 5 and 6 increase in TP with increasing P (V AR|HCM).

We can see through Figure S30 that neither ∂TP
∂# of varaints

nor ∂TP
∂P (V AR|HCM)

changes with
different values of the constants: the variation amoung the values is too small and vari-
able to be considered indicative of a pattern. Additionally, we see in Figure S30b that
only the ∂TP

∂P (V AR|HCM)
of cases 3, 5, and 6 are positive for any # of variants values, and

increases from Case 3 to 5 to 6.

The likely reason for the patterns outlined above are in the fact that with an increasing
P (V AR|HCM), more individuals with HCM will have a pathogenic variant, and thus
more individuals with HCM will be able to be identified by genetic tests, thus increasing
the number of true positives for the genetic tests. Non-genetic tests are not affected by
this change, however. Case 6 likely has the highest ∂TP

∂P (V AR|HCM)
because it does not have

any secondary “check”, unlike the echocardiogram follow-up for cases 3 and 5. For cases
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3 and 5, a certian number of individuals who have HCM and a variant will be retained
due to a false negative echocardiogram. On average, for Case 3, only 85.1% of individuals
who have HCM and had a positive genetic test will be discharged, and for Case 5, only
60.7% of individuals who have HCM and a positive genetic test will be discharged (see
section 8.3). Because of this “check” that eliminates some true positives, the number
of true positives as well as ∂TP

∂P (V AR|HCM)
in cases 3 and 5 will be less than Case 6. Be-

cause cases 2 and 4 are non-genetic, they are not affected by the P (V AR|HCM) at all.
# of variants does not affect even genetic tests because changing the # of variants
does not change how many people with HCM will be identified by a genetic test, but
only changes the number of individuals who do not have HCM that will be identified by
a genetic test.

(a) ∂TP
∂# of varaints (b) ∂TP

∂P (V AR|HCM)

Figure S30: Officer Simulation. Values for ∂TP
∂P (V AR|HCM)

are constant with changing
# of varaints, with Case 6 having the highest value, Case 3 the second highest, and
Case 5 the third highest. Cases 2 and 4 had slopes of zero. ∂TP

∂# of varaints
was around zero

for all cases.

Enlisted simulations returned absolute values of True Positives illustrated in Figure S31.
The trends seen in the enlisted cases are the same as the trends seen in the officer cases
for ∂TP

∂# of varaints
and ∂TP

∂P (V AR|HCM)
, with the absolute values being larger due to the larger

enlisted population.
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(a) Case 2
σ : {15.3, 16.0, 16.2, 16.4, 16.9}

(b) Case 3
σ : {11.3, 12.3, 13.3, 14.4, 15.8}

(c) Case 4
σ{12.8, 13.4, 13.7, 13.9, 14.3}

(d) Case 5
σ{9.39, 10.4, 11.3, 12.1, 13.6}

(e) Case 6
σ : {12.2, 13.4, 14.6, 15.8, 17.2}

Figure S31: Heatmaps of the average number of True Positives for each enlisted case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.
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C.2 False Negatives: Number of Individuals Diseased and Re-
tained

An individual that has HCM that is retained will be at risk of dying from SCD in the
military. This diagnostic test must minimize the number of false negatives (FN), or the
number of individuals who are diseased and are still retained.

(a) Case 2
σ : {2.05, 2.21, 2.24, 2.27, 2.36}

(b) Case 3
σ : {2.70, 3.27, 3.74, 4.13, 4.50}

(c) Case 4
σ{3.41, 3.54, 3.60, 3.65, 3.77}

(d) Case 5
σ{3.78, 4.16, 4.40, 4.63, 5.02}

(e) Case 6
σ : {1.76, 2.6, 3.25, 3.71, 4.19}

Figure S32: Heatmaps of the average number of False Positives for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

Figure S41 displays absolute average values for the false negatives for each P (V AR|HCM)
and # of variants combination for the 1000 officer simulations. From this figure, it can
be seen that Case 2 has a constant low number of false negatives, and cases 3, 5 and 6
lave low numbers of false negatives only for higher P (V AR|HCM) values. Figure S33
displays how the number of false negatives changes with a changing # of variants and
P (V AR|HCM) holding all other variables constant. From Figure S33a, it can be seen
that for the given P (V AR|HCM) of 0.7, Case 5 has the largest number of false nega-
tives, while Case 2 has the lowest number of false negatives, and that the number of false
negatives does not appear to change with a changing # of variants. From Figure S33b,
it can be seen that for a P (V AR|HCM) of 0.9, Case 6 has a lower number of FN than
Case 2, and that as P (V AR|HCM) increases, Cases 3, 5, and 6 decrease in the number
of false negatives.
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(a) Vary # of V ar. (b) Vary P (V AR|HCM)

Figure S33: The largest amount of FN appears to happen for Case 5 in these figures, and
the smallest number of FN happens for both cases 2 and 6 depending on the value of
P (V AR|HCM). No change in the FN appears when varying the # of variants, while
the number of FN for cases 3, 5, and 6 decrease for increasing P (V AR|HCM).

Figure S34 displays ∂FN
∂# of varaints

and ∂FN
∂P (V AR|HCM)

with varying values of their respective
constants. Figure S34a indicates that the number of FN does not change for any value
of # of varaints regardless of the value of P (V AR|HCM), as the value of ∂FN

∂# of varaints

for all cases is approximately zero. Figure S34b indicates that Case 6 has the most neg-
ative ∂FN

∂P (V AR|HCM)
, followed by Case 3 and Case 5. This means that Case 6 will decrease

the number of false negatives in its test more than Case 3 or Case 5 for an increased
P (V AR|HCM) no matter the # of varaints value.

It is also important to note the pattern we see among the values of ∂FN
∂P (V AR|HCM)

with

the values of ∂TP
∂P (V AR|HCM)

, which appear to be opposites of each other. For example,

for Case 6, a value of ∂FN
∂P (V AR|HCM)

� −34 can be seen in Figure S33b, and a value of
∂TP

∂P (V AR|HCM)
� 34 can be seen in Figure S30b. This also happens for cases 3 and 5, and

for cases 2 and 4 (which are all zeroes). This makes sense because as a test is able to
detect and discharge more individuals who have a disease (increase the TP), the number
of individuals who have the disease and are undetected and retained (the number of FN)
decreases by the same rate.

Enlisted simulations returned absolute values of False Negatives illustrated in Figure S35.
The trends seen in the enlisted cases are the same as the trends seen in the officer cases
for ∂FN

∂# of varaints
and ∂FN

∂P (V AR|HCM)
, with the absolute values being larger due to the larger

enlisted population by approximately 9, the ratio of the enlisted population to the officer
population.
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(a) ∂FN
∂# of varaints (b) ∂FN

∂P (V AR|HCM)

Figure S34: ∂FN
∂# of varaints

appears to be approximately zero for all cases. ∂FN
∂P (V AR|HCM)

appears to be negative and constant for all values of # of variants, with increasing
magnitude from cases 5, 3 to 6. Note that ∂FN

∂P (V AR|HCM)
appears to be the opposite of

∂TP
∂P (V AR|HCM)

.

(a) Case 2
σ : {6.40, 6.64, 6.73, 6.86, 7.10}

(b) Case 3
σ : {8.23, 9.91, 11.1, 12.3, 13.6}

(c) Case 4
σ : {10.2, 10.8, 11.0, 11.1, 11.6}

(d) Case 5
σ : {11.3, 12.4, 13.4, 13.9, 15.0}

(e) Case 6
σ : {5.38, 7.77, 9.62, 11.2, 12.5}

Figure S35: Heatmaps of the average number of False Negatives for each enlisted case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.
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C.3 False Positives: Number of Individuals NOT Diseased &
Discharged

False Positives (FP) give a measure of how well the screening test is able to discriminate
between someone who does not have the disease from someone who has the disease. In
this case, discharging someone without disease is a false positive, and has consequences for
the military and for the individual. The military will loose a perfectly healthy candidate,
and the individual will be prevented from joining the military which has psychological
and ethical consequences. In addition, an individual that is flagged as having HCM who
does not actually have the disease is brought upon with unnecessary psychological dis-
tress from anxiety, additional healthcare requirements, and lifestyle restrictions brought
upon from the HCM diagnosis. It is therefore crucial that this test limits the number of
people that it erroneously classifies as diseased.

Figure S36 displays the average number of false positives for each P (V AR|HCM) and
# of variants combination. It can be seen clearly from Figure S36 that Case 2 has a
much larger amount of false positives than any of the other cases, and that Case 5 has
the lowest number of false positives for every P (V AR|HCM) and # of variants combi-
nation. Cases 3 and 6 vary in thier false positive values for different P (V AR|HCM) and
# of variants combinations.

Figures S37 andS38 allow us to see the relative values of FP for each case, and allow us
to visualize ∂FP

∂# of varaints
and ∂FP

∂P (V AR|HCM)
. From Figure S37, the much larger amount of

false positives for Case 2 compared with the other cases can be seen. From Figure S38, it
can be seen that ∂FP

∂P (V AR|HCM)
is negative for cases 3 and 6, and approximately zero for

cases 2, 4 and 5 when the P (V AR|HCM) is held at 0.7. From Figure S37b, it can be
seen that ∂FP

∂# of varaints
is positive for cases 3 and 6, and zero for cases 2, 4, and 5 when

the number of variants is held at 200.

From Figure S39, it can be seen how ∂FP
∂# of varaints

and ∂FP
∂P (V AR|HCM)

changes with different

constants. Figure S39a shows that ∂FP
∂# of varaints

is positive and constant for cases 3 and
6 with Case 6 having the most positive value, and is approximately zero for cases 2, 4
and 5. Figure S39b shows that ∂FP

∂P (V AR|HCM)
is negative constant value for cases 3 and 6

with Case 6 having the most negative value, and is approximatley zero for cases 2, 4 and 5.

The reason for the positive ∂FP
∂# of varaints

values for cases 3 and 6 is due to the fact that
as more variants are included and recognized as “disease causing,” the population of in-
dividuals who will be identified by a genetic screening increase. However, for a constant
P (V AR|HCM), the number of individuals that actually have HCM remains constant.
Because of this fact, the new positives that come from this increase in the number of
variants will be false positives. The reason for the negative ∂FP

∂P (V AR|HCM)
for cases 3 and

6 is due to the fact that when the P (V AR|HCM) increases, more individuals who have
a variant will have the disease. This will decrase the number of people who have the
variant and who DO NOT have the disease, thus lowering the false positives.

It is interesting to note that Case 5 has a ∂FP
∂# of varaints

and ∂FP
∂P (V AR|HCM)

of close to zero

for all P (V AR|HCM) and # of variant combinations. This is likely due to the fact that
the absolute value of false positves for Case 5 is close to zero, and so the slope for FP will
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(a) Case 2
σ : {42.6, 45.3, 46.0, 47.0, 48.7}

(b) Case 3
σ : {0.06, 1.10, 1.40, 1.69, 3.13}

(c) Case 4
σ : {3.77, 4.03, 4.08, 4.14, 4.30}

(d) Case 5
σ : {0.00, 0.09, 0.11, 0.14, 0.25}

(e) Case 6
σ{0.23, 2.85, 3.62, 4.27, 7.97}

Figure S36: Heatmaps of the average number of False Positives for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

(a) Zoomed out (b) Zoomed in

Figure S37: The number of false positives in Case 2 is much larger than the number of
false positives in any other case. Additionally, From Figure S37b, it can be seen that the
number of FP increases for an increased # of variants for cases 3 and 6 only.
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(a) Zoomed out (b) Zoomed in

Figure S38: Again, the number of false positives in Case 2 is much larger than the number
of false positives in any other case. Additionally, it can be seen that for cases 3 and 5
only, the number of false positives decreased with an increased P (V AR|HCM).

not change much for such low absolute values. Related to this is the fact that Case 3 has
much lower absolute values of ∂FP

∂# of varaints
and ∂FP

∂P (V AR|HCM)
than Case 6. The reason

for this lies in Case 3’s echocardiogram “check” on the genetic test, which will also reduce
false positives by excluding individuals who do not have HCM yet had a variant and were
detected by the genetic test. Cases 2 and 4 are non-genetic, and so would not be expected
to change with different values of P (V AR|HCM) or # of variants.

We display in Figure S40 the average enlisted FP values for the screening test cases.
Additionally, we analyzed the trends and ∂FP

∂# of varaints
and ∂FP

∂P (V AR|HCM)
as we did for

the officer simulations. The trends in the data remained the same, with higher absolute
numbers due to the large enlisted population. It is also interesting to note that the values
for the enlisted cases are greater than the officer cases by approximately a factor of 9.
This is expected because the enlisted population is approximately 9 times as large as the
officer population.



171

(a) Zoomed out (b) Zoomed in

Figure S39: ∂FP
∂# of varaints

is seen to be most positive for Case 6, followed by Case 3, and

zero for cases 2, 4 and 5. ∂FP
∂P (V AR|HCM)

is seen to be most negative for Case 6, followed by
Case 3 and zero for cases 2, 4 and 5. All values appear to be constant for the variation
of the constants for the partial derivatives.

(a) Case 2
σ : {132, 137, 139, 141, 149}

(b) Case 3
σ : {0.275, 3.38, 4.21, 5.05, 9.34}

(c) Case 4
σ : {11.7, 12.1, 12.4, 12.6, 13.1}

(d) Case 5
σ : {0.032, 0.288, 0.348, 0.424, 0.776}

(e) Case 6
σ : {0.684, 8.78, 10.9, 13.4, 24.0}

Figure S40: Heatmaps of the average number of False Positives for each enlisted case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.
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We can make a few conclusions regarding the tests from the data presented. Case 2
produces an extremely large amount of false positives relative to the other cases, and so
if a screening test desires to limit false positives, Case 2 would not be a feasible option.
The military does need to limit false positives, and so Case 2 would not be a realistic
option in the military because of this fact. Case 4 also has a relatively high number of FP.
Additionally, cases 3 and 6 performed well by limiting the number of false positives at a
high P (V AR|HCM) and low # of variants, but at lower P (V AR|HCM) and higher
# of variant combinations, the tests resulted in higher amounts of false positives. This
indicates that, in order to use cases 3 and 6, it must be assured that the P (V AR|HCM)
and higher # of variant values in place in reality are adequate to limit the number of
false positives. Case 5 performed well by limiting the number of false positives for every
P (V AR|HCM) and # of variant combinations.
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C.4 True Negatives: Number of individuals NOT Diseased &
Retained

Just as a test must accurately identify people who have a disease without over-classifying
disease, a test must also accurately identify individuals who do not have disease. True
negatives (TN) convey the number of individuals that are correctly identified as not hav-
ing disease. Figure S41 displays the absolute values for the number of true negatives
for each case and each combination of P (V AR|HCM) and # of variants as an average
of the 1000 officer simulations. From this data, Case 2 appears to have a much lower
number of TN than the other cases, and Case 6 appears to have variability in TN for
different P (V AR|HCM).

(a) Case 2
σ : {43.08, 45.59, 46.31, 47.19, 48.94}

(b) Case 3
σ : {5.54, 5.81, 5.88, 6.02, 6.63}

(c) Case 4
σ : {6.64, 6.92, 7.05, 7.14, 7.41}

(d) Case 5
σ : {5.44, 5.66, 5.73, 5.80, 6.01}

(e) Case 6
σ : {5.54, 6.38, 6.74, 7.15, 9.95}

Figure S41: Heatmaps of the average number of True Negatives for each Officer case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

From Figures S42a and S43a, it can be seen that the number of TN is much less for Case
2 than the other cases. From Figure S42b, a negative slope, ∂TN

∂# of varaints
, can be seen for

cases 3 and 6. This indicates that the number of TN decreases for an increased number
of variants. From Figure S43b, a positive slope, ∂TN

∂P (V AR|HCM)
, is found for cases 3 and 6,

indicating that the number of TN increases with an increased P (V AR|HCM).

Figure S44 displays the values of ∂TN
∂# of varaints

and ∂TN
∂P (V AR|HCM)

for all of their respective

constants. From Figure S44a, ∂TN
∂# of varaints

appears to be its most negative for Case 6,
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(a) Zoomed out (b) Zoomed in

Figure S42: The number of true negatives in Case 2 is much smaller than the number of
true negatives in any other case. Additionally, From Figure S42b, it can be seen that the
number of TN decreases for an increased # of variants for cases 3 and 6 only.

(a) Zoomed out (b) Zoomed in

Figure S43: Again, the number of true negatives in Case 2 is much smaller than the
number of true negatives in any other case. Additionally, it can be seen that for cases 3
and 5 only, the number of true negatives increased with an increased P (V AR|HCM).

followed by Case 3, and zero for cases 2, 4 and 5. From Figure S44b, ∂TN
∂P (V AR|HCM)

appears

to be largest for Case 6, followed by Case 3, and zero for cases 2, 4 and 5 (Case 5 may
possibly have a very slightly positive value).

It is important to note the pattern we see between the true negative results and the true
positive results. The true negative results appear to have the opposite trends as the true
positive results: for an increased P (V AR|HCM), the number of true negatives rise while
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the number of false positives fall, and for an increased # of variants, the number of true
negatives fall while the number of true positives rise. Even more interesting to note are
the values of ∂TN

∂# of varaints
and ∂TN

∂P (V AR|HCM)
compared with the values of ∂FP

∂# of varaints
and

∂FP
P (V AR|HCM)

. For the same case, the numbers appear to be direct opposites of each other.

For example, for Case 6, a value of ∂FP
∂# of varaints

� 0.16 for all values of P (V AR|HCM),

and a value of ∂TN
∂# of varaints

� −0.16 for all values of P (V AR|HCM) are found. Addi-

tionally, a value of ∂FP
P (V AR|HCM)

� −35 for all values of # of variants, and a value of
∂TN

∂P (V AR|HCM)
� 35 for all values of # of variants are found for Case 6. The same is

true for the other cases: it appears that the values for the partial derivatives of the false
positives are opposites of the partial derivatives for the true negatives. This observation
makes sense because, as a test is able to distinguish better which individuals do NOT
have disease, or in this case do not have HCM, the number of falsely classified individu-
als as diseased will decrease, and the number of correctly classified individuals as NOT
diseased will increase, thus decreasing the number of false positives and increasing the
number of true negatives at the same rate.

Thus, when discussing the trends in data for true negatives, the trends may also be ex-
plained by the false positives. For the genetic cases, the tests will become better at not
misclassifying individuals as diseased for lower values of # of variants larger values of
P (V AR|HCM). Case 6, again, appears to have a greater change in TN values than the
other genetic tests (cases 3 and 5) because there is no ability to “check” Case 6, unlike
cases 3 and 5, and so it will be more affected by the changing parameters of # of variants
and P (V AR|HCM).

(a) ∂TN
∂# of varaints (b) ∂TN

∂P (V AR|HCM)

Figure S44: ∂TN
∂# of varaints

is seen to be most negative for Case 6, followed by Case 3, and

zero for cases 2, 4 and 5. ∂TN
∂P (V AR|HCM)

is seen to be most positive for Case 6, followed by
Case 3 and zero for cases 2, 4 and 5. All values appear to be constant for the variation
of the constants for the partial derivatives.

In Figure S45, the average values over the 1000 enlisted simulations for each # of variants
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and P (V AR|HCM) combination are shown. These trends are the same except the
absolute value of the numbers is increased by approximately 9, the approximate ratio
of the enlisted population to the officer population.

(a) Case 2
σ : {132, 138, 140, 141, 149}

(b) Case 3
σ : {16.8, 17.8, 18.1, 18.5, 20.0}

(c) Case 4
σ : {20.2, 21.2, 21.5, 21.8, 22.5}

(d) Case 5
σ : {16.6, 17.3, 17.5, 17.8, 18.5}

(e) Case 6
σ : {17.3, 19.8, 21.0, 22.2, 29.9}

Figure S45: Heatmaps of the average number of True Negatives for each enlisted case.
Standard deviation summary given as: σ: {min, 25th quantile, median, 75th quantile,
maximum}.

D Appendix: Additional Information

In this Appendix, we include a Table displaying the raking of all possible logistic regression
models (Table S1), a Table displaying the ranking of all 400 variants used in the ranked
variant list (Table S2), and the approval documents, actual survey form distributed, and
survey email distributed to individuals at the United States Naval Academy.



Supplementary Table S1: A Ranking of All Possible Models 

This table lists all 64 logistic regression models as ranked by AIC for how well they fit the ClinVar data for 
HCM in MYH7 and MYBPC3 according to AIC. Boxes filled in black indicate the presence of a parameter in 

the model. 
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46 #  6 #  #  5 4 1 10 1 

122 #   # 58 # ## 11 2 3 16 2 

121    # 57 # ## 7 6 8 21 3 

110 #  4 #  # 15 10 7 2 19 4 

44 # #  #  #  4 9 4 17 5 

45   # #  #  2 10 6 18 6 

58 #   # 4 #  18 1 7 26 7 

57    # 3 #  12 5 10 27 8 

109   # #  # 20 6 14 9 29 9 

108 # #  #  # 27 9 13 5 27 10 

43  #  #  #  1 17 13 31 11 

78 #  # #   82 8 11 11 30 12 

107  #  #  # 27 3 19 12 34 13 

14 #  1 9    17 8 15 40 14 

29   1 6 1   25 3 14 42 15 

77   1 7   12 22 12 16 50 16 

13   1 5    27 15 17 59 17 

106 #   #  # 2 36 18 18 72 18 

38 #  1   6  13 29 20 62 19 

42 #   #  #  35 16 19 70 20 

177



70 #  1    12 16 30 23 69 21 

105    #  # 2 34 22 21 77 22 

41    #  #  33 23 25 81 23 

90 #   4 1  7 41 20 24 85 24 

102 #  1   4 5 20 33 22 75 25 

89    4 1  7 43 21 26 90 26 

36 # 1    #  19 34 33 86 27 

37   0   7  15 47 27 89 28 

35  1    #  14 43 41 98 29 

50 #    1 7  30 28 32 90 30 

100 # 1    9 3 24 39 34 97 31 

101   0   6 2 23 49 29 101 32 

76 # 1  3   8 46 24 35 105 33 

114 #    1 6 2 31 31 30 92 34 

99  1    # 3 21 46 40 107 35 

75  1  3   9 47 25 38 110 36 

69   1    9 26 45 28 99 37 

49     1 7  28 35 37 100 38 

5   1     32 41 31 104 39 

113     1 6 2 29 37 36 102 40 

82 #    1  6 42 32 39 113 41 

26 #   2 1   50 26 44 120 42 

81     1  6 44 36 42 122 43 

25    2 1   53 27 46 126 44 

68 # 1     8 45 40 43 128 45 

67  1     8 48 44 45 137 46 

98 #     6 2 39 56 49 144 47 
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34 #     7  40 55 50 145 48 

18 #    1   49 50 47 146 49 

97      7 2 37 60 55 152 50 

74 #   1   6 52 48 48 148 51 

12 # 1  1    58 38 52 148 52 

33      8  38 61 56 155 53 

17     1   54 51 51 156 54 

11  1  1    60 42 57 159 55 

73    2   6 56 52 53 161 56 

4 # 1      57 53 54 164 57 

66 #      6 51 58 59 168 58 

3  1      59 54 58 171 59 

65       6 55 62 60 177 60 

10 #   1    62 57 61 180 61 

2 #       61 63 62 186 62 

9    1    64 59 63 186 63 

1        63 64 64 191 64 
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Supplementary Table S2: Top 400 Variants on Ranked Variant List 

This table lists the top 400 variants according to their position on the ranked variant list for 
MYH7 and MYBPC3. These variants were used in the cost/benefit simulation. We include these 

variants as a reference and as a tool for future exploration in genomic variation, with the 
possibility that variants on this list may be validated as pathogenic by future genomic 

discoveries. The First 90 variants, all ranked 1, are pathogenic according to ClinVar. The next 
310 variants, not found in ClinVar, are ranked according to their model score. 

Rank Chrom. Pos. Ref. Alt. Model #46 
Score 

1 11 47353795 C T 1 
1 11 47360071 C T 1 
1 11 47369975 C T 1 
1 14 23886078 T G 1 
1 14 23889431 C A 1 
1 11 47353626 G A 1 
1 11 47356671 G A 1 
1 11 47364129 C G 1 
1 11 47353740 G A 1 
1 11 47355117 G A 1 
1 11 47368981 T A 1 
1 14 23884229 C T 0.999 
1 11 47367757 C A 0.999 
1 14 23884353 C T 0.999 
1 14 23883305 C T 0.999 
1 14 23886382 C T 0.999 
1 11 47359010 C T 0.999 
1 14 23897840 C T 0.999 
1 14 23894048 C T 0.999 
1 14 23888796 C G 0.999 
1 11 47370000 G T 0.999 
1 14 23893328 G A 0.998 
1 14 23888475 C T 0.998 
1 11 47355304 C T 0.998 
1 14 23892818 C T 0.998 
1 14 23898246 C T 0.998 
1 14 23894567 G A 0.998 
1 14 23892761 C T 0.998 
1 11 47353433 C T 0.998 
1 14 23886827 G A 0.997 
1 11 47354526 T G 0.997 
1 11 47355107 C T 0.997 
1 11 47364667 C T 0.997 
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1 14 23895180 G A 0.997 
1 14 23894969 C T 0.997 
1 14 23893234 T A 0.996 
1 11 47368581 C G 0.995 
1 14 23901922 C T 0.995 
1 14 23888731 C T 0.994 
1 14 23889439 C T 0.994 
1 11 47355106 A C 0.994 
1 11 47369407 C T 0.993 
1 11 47364269 C T 0.993 
1 11 47367768 C G 0.993 
1 11 47359005 A G 0.993 
1 14 23900999 G A 0.992 
1 14 23893321 T C 0.992 
1 11 47354743 A C 0.992 
1 11 47374196 C G 0.991 
1 14 23896932 C G 0.991 
1 11 47360114 G T 0.99 
1 14 23896042 C T 0.99 
1 11 47364698 T C 0.989 
1 14 23895023 G A 0.989 
1 11 47367923 T C 0.988 
1 11 47360200 C T 0.987 
1 14 23900635 A G 0.987 
1 14 23892881 G T 0.986 
1 11 47373058 T C 0.986 
1 11 47364270 G C 0.986 
1 11 47364632 C T 0.985 
1 11 47364580 A G 0.984 
1 14 23897049 C T 0.984 
1 14 23900859 C T 0.982 
1 14 23902297 A G 0.98 
1 14 23892845 G C 0.979 
1 11 47354203 G C 0.977 
1 14 23902913 C G 0.976 
1 11 47367764 T C 0.973 
1 14 23896982 C T 0.971 
1 14 23896866 C T 0.97 
1 14 23886150 T C 0.969 
1 14 23884256 G C 0.967 
1 11 47354848 T C 0.964 
1 14 23893316 G C 0.961 
1 14 23894013 G C 0.937 
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1 14 23883216 C T 0.936 
1 11 47354740 C T 0.929 
1 11 47354740 C G 0.913 
1 11 47363612 G A 0.906 
1 14 23894525 C T 0.897 
1 11 47355103 C T 0.889 
1 11 47364125 T A 0.879 
1 14 23900992 T C 0.85 
1 11 47365119 G C 0.842 
1 14 23885003 G T 0.719 
1 11 47371575 C G 0.602 
1 11 47367930 C T 0.541 
1 11 47364832 C T 0.001 
1 11 47364709 C T 0.001 

91 14 23890256 T A 1 
92 11 47353625 C T 1 
93 14 23895986 C T 1 
94 14 23883101 T C 1 
95 14 23885041 C T 1 
96 11 47363542 C T 1 
97 14 23900886 C T 1 
98 14 23886513 C T 1 
99 14 23883310 G A 1 

100 14 23883237 G T 1 
101 14 23894232 C A 1 
102 11 47354209 C A 1 
103 14 23889176 C A 1 
104 14 23889224 C A 1 
105 14 23898166 C T 1 
106 11 47354524 C T 1 
107 14 23885290 C A 1 
108 14 23886827 G T 1 
109 14 23892767 G A 1 
110 14 23884990 C A 1 
111 11 47371326 T A 1 
112 11 47353809 G A 1 
113 14 23887614 G C 1 
114 14 23885041 C A 1 
115 14 23886133 G A 1 
116 14 23888427 G A 1 
117 14 23887614 G A 1 
118 14 23893357 T A 1 
119 11 47353809 G T 1 
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120 14 23893277 C A 1 
121 14 23888451 G A 1 
122 14 23894010 C A 1 
123 14 23886491 G A 1 
124 14 23896796 G A 1 
125 14 23885482 G A 1 
126 11 47372053 C G 1 
127 11 47358942 C T 1 
128 14 23897831 G A 1 
129 14 23902303 C T 0.999 
130 14 23888773 C CA 0.999 
131 14 23896918 G T 0.999 
132 14 23896511 C A 0.999 
133 14 23902302 C T 0.999 
134 14 23891486 G A 0.999 
135 14 23884442 TC T 0.999 
136 14 23887429 C T 0.999 
137 14 23888410 C CT 0.999 
138 14 23888450 C T 0.999 
139 14 23891485 C G 0.999 
140 14 23893340 C CAT 0.999 
141 14 23894102 A AT 0.999 
142 14 23894186 AC A 0.999 
143 14 23894201 C T 0.999 
144 14 23894542 TG T 0.999 
145 14 23896822 CAG C 0.999 
146 14 23900678 G A 0.999 
147 14 23885265 CG C 0.999 
148 14 23890185 C A 0.999 
149 14 23893342 GCC G 0.999 
150 14 23882985 G A 0.999 
151 14 23884294 C CAT 0.999 
152 14 23884291 ATT A 0.999 
153 14 23885480 CTGGGCCCGGAGGATCT C 0.999 
154 11 47363692 AC A 0.999 
155 14 23885484 GC G 0.999 
156 11 47354131 G A 0.999 
157 14 23887577 C CCGGGCCGACTG 0.999 
158 11 47356663 CCG C 0.999 
159 14 23889355 TC T 0.999 
160 11 47362772 T TCG 0.999 
161 11 47354884 T TCAACAAC 0.999 
162 14 23883068 C T 0.999 
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163 14 23888796 C T 0.999 
164 11 47354119 TG T 0.999 
165 14 23883054 C T 0.999 
166 14 23894536 C T 0.999 
167 14 23895227 C T 0.999 
168 14 23886764 C T 0.999 
169 14 23888716 G A 0.999 
170 11 47354175 C A 0.999 
171 11 47354176 G A 0.999 
172 11 47353660 CT C 0.999 
173 11 47355200 C T 0.999 
174 14 23889187 TC T 0.999 
175 14 23883021 C T 0.999 
176 14 23883069 G A 0.999 
177 14 23888492 C T 0.999 
178 14 23894494 C T 0.999 
179 14 23883283 C T 0.999 
180 14 23886807 G A 0.999 
181 14 23887443 C T 0.999 
182 14 23890220 C T 0.999 
183 14 23891405 C A 0.999 
184 14 23892815 C T 0.999 
185 14 23894177 C A 0.999 
186 14 23895228 G A 0.999 
187 14 23896832 A AG 0.999 
188 14 23898175 C T 0.999 
189 14 23901892 TG T 0.999 
190 14 23901905 C T 0.999 
191 14 23886132 C T 0.999 
192 14 23902892 C T 0.999 
193 11 47364285 C G 0.999 
194 11 47367776 C A 0.999 
195 14 23884860 C G 0.999 
196 14 23887567 C T 0.999 
197 14 23887579 G A 0.999 
198 11 47353644 C T 0.999 
199 14 23889167 C T 0.999 
200 11 47359002 C T 0.999 
201 11 47364429 C T 0.999 
202 11 47370000 GCAGT G 0.999 
203 11 47365121 CG C 0.999 
204 11 47365122 G GGA 0.999 
205 14 23884233 C T 0.999 
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206 11 47365110 C T 0.999 
207 11 47371406 C A 0.999 
208 11 47355138 C T 0.999 
209 11 47355129 TG T 0.999 
210 11 47360120 C CA 0.999 
211 14 23883032 C T 0.999 
212 14 23888804 CT C 0.999 
213 11 47356670 C T 0.999 
214 11 47358988 G GA 0.999 
215 11 47358987 C A 0.999 
216 14 23882996 C T 0.999 
217 14 23895172 C T 0.999 
218 14 23884376 C T 0.999 
219 14 23885403 C T 0.999 
220 14 23891465 C T 0.999 
221 14 23900798 C T 0.999 
222 14 23886457 C T 0.999 
223 14 23891426 C T 0.999 
224 11 47353722 C T 0.999 
225 11 47359094 C G 0.999 
226 14 23883009 C A 0.999 
227 11 47360200 C A 0.999 
228 11 47359001 G A 0.999 
229 11 47355201 G A 0.999 
230 14 23891500 C A 0.999 
231 14 23893216 C T 0.999 
232 11 47359085 C T 0.999 
233 11 47355156 G A 0.999 
234 11 47360208 C T 0.999 
235 14 23889202 C T 0.999 
236 11 47358987 C T 0.999 
237 14 23889373 C T 0.999 
238 14 23889280 C T 0.999 
239 11 47363567 G A 0.999 
240 11 47359094 C T 0.999 
241 11 47360104 C T 0.999 
242 14 23884899 C T 0.999 
243 14 23883059 T A 0.998 
244 14 23884377 G A 0.998 
245 14 23884422 G A 0.998 
246 14 23884449 C T 0.998 
247 14 23885344 G A 0.998 
248 14 23885392 G A 0.998 
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249 11 47353764 C T 0.998 
250 14 23884909 C T 0.998 
251 11 47367805 A ATGCCG 0.998 
252 11 47359029 C G 0.998 
253 14 23885488 G A 0.998 
254 11 47367866 C T 0.998 
255 11 47367890 C T 0.998 
256 14 23883033 G A 0.998 
257 14 23885343 C T 0.998 
258 14 23888502 C T 0.998 
259 11 47359053 G GA 0.998 
260 11 47359074 C T 0.998 
261 14 23886115 C T 0.998 
262 14 23902893 G A 0.998 
263 11 47367809 C T 0.998 
264 14 23883284 G A 0.998 
265 14 23893115 C T 0.998 
266 11 47355528 C T 0.998 
267 11 47353754 C T 0.998 
268 14 23889256 C T 0.998 
269 14 23889251 C T 0.998 
270 11 47360874 C T 0.998 
271 11 47354130 C T 0.998 
272 11 47353638 G A 0.998 
273 11 47354777 A AC 0.998 
274 11 47361267 G A 0.998 
275 14 23884421 C T 0.998 
276 14 23885487 C T 0.998 
277 14 23884310 C T 0.998 
278 14 23895028 C A 0.998 
279 11 47362755 C T 0.998 
280 14 23886190 C T 0.998 
281 14 23887513 G A 0.998 
282 14 23884999 C T 0.998 
283 14 23884311 G A 0.998 
284 14 23902905 C T 0.998 
285 11 47355189 G A 0.998 
286 14 23895201 G A 0.998 
287 14 23886717 C T 0.998 
288 11 47365047 C G 0.998 
289 11 47359280 A AC 0.998 
290 14 23884929 C T 0.998 
291 11 47354115 A T 0.998 
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292 14 23883098 T C 0.998 
293 14 23884344 C T 0.998 
294 14 23885305 C T 0.998 
295 14 23887429 C G 0.998 
296 14 23890219 T C 0.998 
297 14 23893217 G T 0.998 
298 14 23899017 G A 0.998 
299 14 23884903 AC A 0.998 
300 11 47363693 C T 0.998 
301 11 47367826 C A 0.998 
302 11 47354136 G A 0.998 
303 14 23887567 C G 0.998 
304 11 47367838 G A 0.998 
305 14 23889158 C G 0.998 
306 11 47372982 CTG C 0.998 
307 14 23888493 G A 0.998 
308 14 23889334 C T 0.998 
309 14 23884966 G A 0.998 
310 14 23889359 G A 0.998 
311 11 47370035 G A 0.998 
312 14 23884304 C T 0.998 
313 14 23887512 C T 0.998 
314 14 23894049 G A 0.998 
315 14 23895255 G A 0.998 
316 14 23884905 C T 0.998 
317 14 23889323 C T 0.998 
318 14 23884965 C T 0.998 
319 11 47354443 G A 0.998 
320 14 23887557 C T 0.998 
321 14 23886518 C T 0.998 
322 11 47364296 C G 0.998 
323 14 23898993 C G 0.998 
324 14 23883071 A G 0.998 
325 14 23886133 G C 0.998 
326 11 47359001 G C 0.998 
327 11 47359041 G A 0.998 
328 14 23894051 C T 0.998 
329 14 23887546 C T 0.998 
330 14 23883224 C T 0.998 
331 14 23895200 C A 0.998 
332 14 23883233 G A 0.998 
333 11 47355118 CA C 0.998 
334 11 47355233 C T 0.998 
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335 14 23895271 CA C 0.998 
336 14 23889373 C A 0.998 
337 11 47365154 G A 0.998 
338 14 23884226 C T 0.998 
339 14 23896793 C G 0.998 
340 14 23886076 C T 0.998 
341 11 47355233 C G 0.997 
342 11 47359026 C T 0.997 
343 14 23893192 T A 0.997 
344 14 23895254 C T 0.997 
345 11 47364284 C T 0.997 
346 11 47362770 C T 0.997 
347 11 47369219 TC T 0.997 
348 14 23886203 T G 0.997 
349 14 23884389 C T 0.997 
350 14 23884460 T A 0.997 
351 14 23886180 T C 0.997 
352 14 23887458 G A 0.997 
353 14 23892760 T A 0.997 
354 14 23902887 AC A 0.997 
355 11 47361331 C A 0.997 
356 14 23884890 G T 0.997 
357 14 23894942 C G 0.997 
358 14 23899776 G T 0.997 
359 14 23887610 C G 0.997 
360 14 23889430 T A 0.997 
361 14 23894557 G A 0.997 
362 14 23889316 C T 0.997 
363 11 47363584 T A 0.997 
364 11 47365113 C T 0.997 
365 14 23898993 C T 0.997 
366 11 47354512 C T 0.997 
367 11 47355305 T C 0.997 
368 14 23889235 G A 0.997 
369 11 47367845 G A 0.997 
370 14 23901717 T A 0.997 
371 11 47353637 C T 0.997 
372 11 47354497 G A 0.997 
373 14 23884930 G A 0.997 
374 11 47354482 C T 0.997 
375 14 23891387 A C 0.997 
376 14 23893360 T C 0.997 
377 11 47363543 G A 0.997 
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378 14 23886746 G A 0.997 
379 11 47371324 C A 0.997 
380 14 23885350 G A 0.997 
381 14 23895991 G A 0.997 
382 14 23901068 C T 0.997 
383 14 23882997 G A 0.997 
384 14 23886517 T C 0.997 
385 14 23899843 C T 0.997 
386 11 47355529 G A 0.997 
387 11 47355234 G A 0.997 
388 11 47367839 C T 0.997 
389 14 23888691 C T 0.997 
390 11 47356691 G T 0.997 
391 11 47354759 C T 0.997 
392 11 47360209 G A 0.997 
393 11 47356683 G A 0.997 
394 11 47361268 TA T 0.997 
395 11 47359032 C G 0.997 
396 14 23897726 T A 0.996 
397 14 23886878 C T 0.996 
398 14 23884589 C T 0.996 
399 11 47353429 G A 0.996 
400 14 23894085 G A 0.996 
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